亚洲成狼|高清国产传媒|特级一级毛片|麻豆印象传媒是哪里的|果冻传媒88av|麻豆传媒之双胞胎系列|麻豆映画传媒mofy ep6|婷婷啪|四虎东方影库|免费av片,麻豆传媒作品微信公众号,91制片厂果冻传媒安娜,麻豆传媒徐韵姗在线观看

ISSN  0890-5487 CN 32-1441/P

2012 Vol.(4)

Display Mode:          |     

Multiaxial Fatigue Analyses of Stress Joints for Deepwater Steel Catenary Risers
ZHENG Wen-qing, YANG He-zhen, LI Qing-quan
2012, (4): -.
[Abstract](1138) [PDF 0KB](9)
Abstract:
Prediction of Streamwise Flow-Induced Vibration of A Circular Cylinder in the First Instability Range
Xu Wan-hai, Yu Jian-xing, Du Jie, CHENG An-kang, KANG Hao
2012, (4): 555-564.
[Abstract](1165) [PDF 0KB](8)
Abstract:
The streamwise flow-induced vibration of a circular cylinder with symmetric vortex shedding in the first instability range is investigated, and a wake oscillator model for the dynamic response prediction is proposed. An approach is applied to calibrate the empirical parameters in the present model; the numerical and experimental results are compared to validate the proposed model. It can be found that the present prediction model is accurate and sufficiently simple to be easily applied in practice.
Direct Numerical Simulation of Interaction Between Wave and Porous Breakwater Based on N-S Equation
WANG Deng-ting
2012, (4): 565-574.
[Abstract](1160) [PDF 0KB](6)
Abstract:
In this paper, a numerical model is established. A modified N-S equation is used as a control equation for the wave field and porous flow area. The control equations are discreted and solved by the finite difference method. The free surface is tracked by the VOF method. The pressure field and velocity field of the whole flow area are solved by the reiterative iteration method. Finally, compared with the physical model test results of wave flume, the numerical model established in the present study is validated.
A Modeling Study on Saltwater Intrusion to Western Four Watercourses in the Pearl River Estuary
CHENG Xiang-ju, ZHAN Wei, GUO Zhen-ren, YUAN Li-rong
2012, (4): 575-590.
[Abstract](1153) [PDF 0KB](7)
Abstract:
Saltwater intrusion has been serious in the Pearl River estuary in recent years. For better understanding and analysis of the saltwater movement to the estuary, the three-dimensional Finite-Volume Coastal Ocean Model (FVCOM) is made to simulate the salinity intrusion to the four western watercourses in the Pearl River estuary under three semilunar conditions. With the measured and simulated Root Mean Square Error (RMSE) and the mean absolute percentage error of water level and salinity at multiple sites, the results show that the numerical water levels, salinity and flow velocities are in agreement with the measured data. It is acceptable and feasible to apply the FVCOM to simulate the salt water intrusion in the western four watercourses of the Pearl River. With the numerical data, the time and spatial movement patterns of saltwater intrusion along the Modao watercourse are analyzed. The salinity contour reaches its peak generally during 3~5 days before the spring tide. The salinity stratification is more obvious in the period of ebb tide than that in the rising tide whether in the spring or neap tides. Salt fluxes reflect changes of salt into the estuary, and the change rules are close to the rules of salinity intrusion.
Prediction Methods of Spudcan Penetration for Jack-up Units
ZHANG Ai-xia, Meng-lan, LI Hai-ming, ZHAO Jun, WANG Jian-jun
2012, (4): 591-602.
[Abstract](1197) [PDF 0KB](7)
Abstract:
Jack-up units are extensively playing a successful role in drilling engineering around the world, and their safety and efficiency take more and more attraction in both research and engineering practice. An accurate prediction of the spudcan penetration depth is quite instrumental in deciding on whether a jack-up unit is feasible to operate at the site. The prediction of a too large penetration depth may lead to the hesitation or even rejection of a site due to potential difficulties in the subsequent extraction process; the same is true of a too small depth prediction due to the problem of possible instability during operation. However, a deviation between predictive results and final field data usually exists, especially when a strong-over-soft soil is included in the strata. The ultimate decision sometimes to a great extent depends on the practical experience, not the predictive results given by the guideline. It is somewhat risky, but no choice. Therefore, a feasible predictive method for the spudcan penetration depth, especially in strata with strong-over-soft soil profile, is urgently needed by the jack-up industry. In view of this, a comprehensive investigation on methods of predicting spudcan penetration is executed. For types of different soil profiles, predictive methods for spudcan penetration depth are proposed, and the corresponding experiment is also conducted to validate these methods. In addition, to further verify the feasibility of the proposed methods, a practical engineering case encountered in the South China Sea is also presented, and the corresponding numerical and experimental results are also presented and discussed.
Modeling and Simulation of A Novel Autonomous Underwater Vehicle with Glider and Flapping-Foil Propulsion Capabilities
TIAN Wen-long, SONG Bao-wei, DU Xiao-xu, MAO Zhao-yong, DING Hao
2012, (4): 603-622.
[Abstract](1207) [PDF 0KB](9)
Abstract:
HAISHEN is a long-ranged and highly maneuverable AUV which has two operating modes: glider mode and flapping-foil propulsion mode. As part of the vehicle development, a three-dimensional mathematical model of the conceptual vehicle was developed on the assumption that HAISHEN has a rigid body with two independently controlled oscillating hydrofoils. A flapping-foil model was developed based on the work done by Georgiades et al. (2009). Effect of controllable hydrofoils on the vehicle stable motion performance was studied theoretically. Finally, a dynamics simulation of the vehicle in both operating modes is created in this paper. The simulation demonstrates that: (1) in the glider mode, owing to the independent control of the pitch angle of each hydrofoil, HAISHEN travels faster and more efficiently and has a smaller turning radius than conventional fix-winged gliders; (2) in the flapping-foil propulsion mode, HAISHEN has a high maneuverability with a turning radius smaller than 15 m and a forward motion velocity about 1.8 m/s; (3) the vehicle is stable under all expected operating conditions.
Object Detection and Tracking Method of AUV Based on Acoustic Vision
ZHANG Tie-dong, WAN Lei, ZENG Wen-jing, XU Yu-ru
2012, (4): 623-636.
[Abstract](1205) [PDF 0KB](7)
Abstract:
This paper describes a new framework for object detection and tracking of AUV including underwater acoustic data interpolation, underwater acoustic images segmentation and underwater objects tracking. This framework is applied to the design of vision-based method for AUV based on the forward looking sonar sensor. First, the real-time data flow (underwater acoustic images) is pre-processed to form the whole underwater acoustic image, and the relevant position information of objects is extracted and determined. An improved method of double threshold segmentation is proposed to resolve the problem that the threshold cannot be adjusted adaptively in the traditional method. Second, a representation of region information is created in light of the Gaussian particle filter. The weighted integration strategy combining the area and invariant moment is proposed to perfect the weight of particles and to enhance the tracking robustness. Results obtained on the real acoustic vision platform of AUV during sea trials are displayed and discussed. They show that the proposed method can detect and track the moving objects underwater online, and it is effective and robust.
A Finite Difference Approximation for Dynamic Calculation of Vertical Free Hanging Slender Risers in Re-Entry Application
WANG Sheng-wei, XU Xue-song, YAO Bao-heng, LIAN Lian
2012, (4): 637-652.
[Abstract](1312) [PDF 0KB](7)
Abstract:
The dynamic calculations of slender marine risers, such as Finite Element Method (FEM) or Modal Expansion Solution Method (MESM), are mainly for the slender structures with their both ends hinged to the surface and bottom. However, for the re-entry operation, risers held by vessels are in vertical free hanging state, so the displacement and velocity of lower joint would not be zero. For the model of free hanging flexible marine risers, the paper proposed a Finite Difference Approximation (FDA) method for its dynamic calculation. The riser is divided into a reasonable number of rigid discrete segments. And the dynamic model is established based on simple Euler-Bernoulli Beam Theory concerning tension, shear forces and bending moments at each node along the cylindrical structures, which is extendible for different boundary conditions. The governing equations with specific boundary conditions for riser’s free hanging state are simplified by Keller-box method and solved with Newton iteration algorithm for a stable dynamic solution. The calculation starts when the riser is vertical and still in calm water, and its behavior is obtained along time responding to the lateral forward motion at the top. The dynamic behavior in response to the lateral parametric excitation at the top is also proposed and discussed in this paper.
Numerical Simulation of Sloshing with Large Deforming Free Surface by MPS-LES Method
PAN Xu-jie, ZHANG Huai-xin, SUN Xue-yao
2012, (4): 653-668.
[Abstract](1260) [PDF 0KB](7)
Abstract:
Moving particle semi-implicit (MPS) method is a fully Lagrangian particle method which can easily solve problems with violent free surface. Although it has demonstrated its advantage in ocean engineering applications, it still has some defects to be improved. In this paper, MPS method is extended to the large eddy simulation (LES) by coupling with a sub-particle-scale (SPS) turbulence model. The SPS turbulence model turns into the Reynolds stress terms in the filtered momentum equation, and the Smagorinsky model is introduced to describe the Reynolds stress terms. Although MPS method has the advantage in the simulation of the free surface flow, a lot of non-free surface particles are treated as free surface particles in the original MPS model. In this paper, we use a new free surface tracing method and the key point is “neighbor particle”. In this new method, the zone around each particle is divided into eight parts, and the particle will be treated as a free surface particle as long as there are no “neighbor particles” in any two parts of the zone. As the number density parameter judging method has a high efficiency for the free surface particles tracing, we combine it with the neighbor detected method. First, we select out the particles which may be mistreated with high probabilities by using the number density parameter judging method. And then we deal with these particles with the neighbor detected method. By doing this, the new mixed free surface tracing method can reduce the mistreatment problem efficiently. The serious pressure fluctuation is an obvious defect in MPS method, and therefore an area-time average technique is used in this paper to remove the pressure fluctuation with a quite good result. With these improvements, the modified MPS-LES method is applied to simulate liquid sloshing problems with large deforming free surface. Results show that the modified MPS-LES method can simulate the large deforming free surface easily. It can not only capture the large impact pressure accurately on rolling tank wall but also can generate all physical phenomena successfully. The good agreement between numerical and experimental results proves that the modified MPS-LES method is a good CFD methodology in free surface flow simulations.
A Three-Dimensional Water Quality Model and Its Application to Jiaozhou Bay, China
ZHANG Yan, SUN Ying-lan, YU Jing, YUAN Dao-wei, ZHANG Rui-jin
2012, (4): 669-684.
[Abstract](1130) [PDF 0KB](6)
Abstract:
A three-dimensional coupled physical and water quality model was developed and applied to the Jiaozhou Bay to study water quality involving nutrients, biochemical oxygen demand, dissolved oxygen, and phytoplankton that are closely related to eutrophication process. The physical model is a modified ECOM-si version with inclusion of flooding/draining processes over the intertidal zone. The water quality model is based on WASP5 which quantifies processes governing internal nutrients cycling, dissolved oxygen balance and phytoplankton growth. The model was used to simulate the spatial distribution and the temporal variation of water quality in the Jiaozhou Bay for the period of May 2005 to May 2006. In addition, the effect of reduction of riverine nutrients load was simulated and evaluated. The simulated results show that under the influence of nutrients discharged from river, the concentrations of nutrients and phytoplankton were higher in the northwest and northeast of the bay, and decreased from the inner bay to the outer. Affected by strong tidal mixing, the concentrations of all state variables were vertically homogeneous except in the deeper regions where a small gradient was found. Obvious seasonal variation of phytoplankton biomass was found, which exhibited two peaks in March and July, respectively. The variation of riverine waste loads had remarkable impact on nutrients concentration in coastal areas, but slightly altered the distribution in the center of the bay.
Hydrodynamic Behavior of Curtainwall-Pile Breakwaters
O. Nejadkazem, A. R. M. Gharabaghi
2012, (4): 685-698.
[Abstract](1179) [PDF 0KB](7)
Abstract:
A numerical model is developed that can predict the interaction of regular waves normally incident upon a curtainwall-pile breakwater; the upper part of which is a vertical wall and the lower part consists of an array of vertical piles. The numerical model is based on an eigenfunction expansion method, and utilizes a boundary condition nearby the vertical piles that accounts for wave energy dissipation. Numerical solution comprises a finite number of terms, which is a superposition of propagating waves and a series of evanescent waves. The modeling is validated by comparison with previous experimental studies and overall agreement between measurement and calculation is fairly good. The numerical results are related to reflection, transmission, and dissipation coefficient; wave run-up, wave force, and wave overturning moment are also presented. Effect of porosity, relative draft, and relative water depth are discussed; the choice of suitable range of them is described. The relative draft is more effective for shallow water waves. Model shows decrease in relative draft and leads to reduction of relative wave force, overturning moment, and runup. It is shown that curtainwall-pile breakwaters can operate both effectively and efficiently in the range of relative draft between 0.15 and 0.75. The range 0.5 to 0.2 is also recommended for porosity.
Beach Profiles Characteristics Along Giao Thuy and Hai Hau Coasts, Vietnam: A Field Study
NGUYEN Viet Thanh, ZHENG Jin-hai, ZHANG Chi
2012, (4): 699-712.
[Abstract](1233) [PDF 0KB](7)
Abstract:
Giao Thuy and Hai Hau coasts are located in Nam Dinh province, Vietnam, with a total coastline of 54.42 km in length. The sea-dike system has been seriously damaged and there have been many dike breaches which caused floods and losses. This situation is considered of a general representative for coastal area in the northern part of Vietnam. A variety of studies have shown that the gradient in the longshore sediment transport rate and the offshore ?ne sediment lost are the main mechanisms causing the beach erosion. This study presents a field investigation of the beach profiles at Giao Thuy and Hai Hau beaches. Three types of empirical functions for the equilibrium beach profile are applied and compared with the observations. Results show that all observed beach pro?les can be described by a single function. However, one specific equilibrium pro?le equation is not sufficient to assess all beach pro?les. In Section 1 of Giao Thuy and Section 3 of Hai Thinh beaches, beach profiles are consistent with the logarithmic function, while the exponential function fits well in Section 2. This difference is explained with respect to coastal morphology, sediment characteristics and hydrodynamic conditions which vary in site. An analysis of the validity of the beach profile functions is recommended for the numerical modeling and engineering designs in this area.
Study on the High Precision Acoustic Measurement Techniques for Determining Temperature Field Around Seafloor Hydrothermal Vent
CAI Yong, FAN Wei, ZHOU Yan, FU Xian-qiao, FANG Hui, JIN Tao
2012, (4): 723-732.
[Abstract](1204) [PDF 0KB](8)
Abstract:
This paper presents the basis of acoustic method used for temperature field measurement of seafloor hydrothermal vent and two techniques of the parabolic interpolation and the bending compensation of propagation paths of acoustic signal are introduced. Experimental research is performed to exactly rebuild the temperature field around hot springs on the floor of Qiezishan Lake, Yunnan, China. The accuracy of the travel time estimation has been improved based on the aforementioned technique and method. At the same time, by comparison of the results of temperature field with different means, the max absolute error, the maximum relative error and the root mean square error are given. It shows that the technique and the method presented in the paper can be applied to the temperature field measurement detector around the seafloor hydrothermal vent. It also has a good accuracy.

水利部交通運(yùn)輸部國家能源局南京水利科學(xué)研究院 《中國海洋工程》編輯部 版權(quán)所有

Address: 34 Hujuguan, Nanjing 210024, China Pos: 210024 Tel: 025-85829388 E-mail: [email protected]

Support by Beijing Renhe Information Technology Co. Ltd E-mail: [email protected]

蘇ICP備05007122號-5