亚洲成狼|高清国产传媒|特级一级毛片|麻豆印象传媒是哪里的|果冻传媒88av|麻豆传媒之双胞胎系列|麻豆映画传媒mofy ep6|婷婷啪|四虎东方影库|免费av片,麻豆传媒作品微信公众号,91制片厂果冻传媒安娜,麻豆传媒徐韵姗在线观看

ISSN  0890-5487 CN 32-1441/P

Citation: CUI Hong-yu, ZHAO De-you and ZHOU Ping. Adaptive Predictive Inverse Control of Offshore Jacket Platform Based on Rough Neural Network[J]. China Ocean Engineering, 2009, null(2): 185-198. shu

Adaptive Predictive Inverse Control of Offshore Jacket Platform Based on Rough Neural Network

  • Received Date: 2008-04-24
    Accepted Date: 2008-11-13

  • The offshore jacket platform is a complex and time-varying nonlinear system, which can be excited of harmful vibration by external loads. It is difficult to obtain an ideal control performance for passive control methods or traditional active control methods based on accurate mathematic model. In this paper, an adaptive inverse control method is proposed on the basis of novel rough neural networks (RNN) to control the harmful vibration of the offshore jacket platform, and the offshore jacket platform model is established by dynamic stiffness matrix (DSM) method. Benefited from the nonlinear processing ability of the neural networks and data interpretation ability of the rough set theory, RNN is utilized to identify the predictive inverse model of the offshore jacket platform system. Then the identified model is used as the adaptive predictive inverse controller to control the harmful vibration caused by wave and wind loads, and to deal with the delay problem caused by signal transmission in the control process. The numerical results show that the constructed novel RNN has advantages such as clear structure, fast training speed and strong error-tolerance ability, and the proposed method based on RNN can effectively control the harmful vibration of the offshore jacket platform.
  • 加載中
  • 加載中
    1. [1]

      . Neural Network-Based Active Control for Offshore Platforms. China Ocean Engineering, 2003, (3): -.

    2. [2]

      . Adaptive Neural Network Control with Control Allocation for A Manned Submersible in Deep Sea. China Ocean Engineering, 2007, (1): -.

    3. [3]

      . Multiple-Step Predictive Control for Offshore Structures. China Ocean Engineering, 1999, (3): -.

    4. [4]

      . Parallel Neural Network-Based Motion Controller for Autonomous Underwater Vehicles. China Ocean Engineering, 2005, (3): -.

    5. [5]

      . Neural Network Based Robust Controller for Trajectory Tracking of Underwater Vehicles. China Ocean Engineering, 2007, (2): -.

    6. [6]

      . Reliability-Based Full-Life Cycle Optimum Design of Offshore Jacket Platform. China Ocean Engineering, 2004, (1): -.

    7. [7]

      . Feedback and Feedforward Optimal Control for Offshore Jacket Platforms. China Ocean Engineering, 2004, (4): -.

    8. [8]

      FANG Ming-chungLEE Zi-yi . Portable Dynamic Positioning Control System on A Barge in Short-Crested Waves Using the Neural Network Algorithm. China Ocean Engineering, 2013, (4): 469-480.

    9. [9]

      RAHIMI NegarMOGHADDAM Reihaneh Kardehi . Maximizing the Absorbed Power of A Point Absorber Using An FA-Based Optimized Model Predictive Control. China Ocean Engineering, 2018, 32(6): 696-705. doi: 10.1007/s13344-018-0071-4

    10. [10]

      Ming-zhu LITian-zhen WANGFu-na ZHOUMing SHI . An Adaptive Single Neural Control for Variable Step-Size P&O MPPT of Marine Current Turbine System. China Ocean Engineering, 2021, 35(5): 750-758. doi: 10.1007/s13344-021-0066-4

    11. [11]

      . Vibration Characteristics of An Offshore Platform and Its Vibration Control. China Ocean Engineering, 2002, (4): -.

    12. [12]

      舒蘇荀龔文惠 . An Artificial Neural Network-Based Response Surface Method for Reliability Analyses of c-? Slopes with Spatially Variable Soil. China Ocean Engineering, 2016, (1): 113-122.

    13. [13]

      Jun YANWen-bo LIAugusto VAZ MuriloHai-long LUHeng-rui ZHANGHong-ze DUYu-feng BU . Prediction of Load?Displacement Curve of Flexible Pipe Carcass Under Radial Compression Based on Residual Neural Network. China Ocean Engineering, 2023, 37(1): 42-52. doi: 10.1007/s13344-023-0004-8

    14. [14]

      . Aseismic Reliability Analysis Approach for Offshore Jacket Platform Structures. China Ocean Engineering, 1998, (4): -.

    15. [15]

      . Reliability-Based Design for Jacket Platform Under Extreme Loads. China Ocean Engineering, 1996, (2): -.

    16. [16]

      . Semi-Active TLCD Control of Fixed Offshore Platforms Using Artifical Neural Networks. China Ocean Engineering, 2003, (2): -.

    17. [17]

      . Vibration Control of Multi-Tuned Mass Dampers for An Offshore Oil Platform. China Ocean Engineering, 2002, (3): -.

    18. [18]

      . Seismic Response Control of Offshore Platform Structures with Shape Memory Alloy Dampers. China Ocean Engineering, 2005, (2): -.

    19. [19]

      HOSSEINLOU Farhad . Structural Model Updating of Jacket Platform by Control Theory Using Vibration Measurement Approach. China Ocean Engineering, 2021, 35(1): 96-106. doi: 10.1007/s13344-021-0009-0

    20. [20]

      . Calibration of LRFD Format for Steel Jacket Offshore Platform in China Offshore Area (2): Load, Resistance and Load Combination Factors. China Ocean Engineering, 2006, (2): -.

Metrics
  • PDF Downloads(1165)
  • Abstract views(24174)
  • HTML views(31)
  • Cited By(0)

通訊作者: 陳斌, [email protected]
  • 1. 

    沈陽(yáng)化工大學(xué)材料科學(xué)與工程學(xué)院 沈陽(yáng) 110142

  1. 本站搜索
  2. 百度學(xué)術(shù)搜索
  3. 萬方數(shù)據(jù)庫(kù)搜索
  4. CNKI搜索

水利部交通運(yùn)輸部國(guó)家能源局南京水利科學(xué)研究院 《中國(guó)海洋工程》編輯部 版權(quán)所有

Address: 34 Hujuguan, Nanjing 210024, China Pos: 210024 Tel: 025-85829388 E-mail: [email protected]

Support by Beijing Renhe Information Technology Co. Ltd E-mail: [email protected]

蘇ICP備05007122號(hào)-5

/

DownLoad:  Full-Size Img  PowerPoint
Return