2008 Vol.(2)
Display Mode: |
2008, (2): -.
Abstract:
Ice load is the dominative load in the design of offshore platforms in the ice zone, and the extreme ice load is the key factor that affects the safety of platforms. The present paper studies the statistical properties of the global resistance and the extreme responses of the jacket platforms in Bohai Bay, considering the randomness of ice load, dead load, steel elastic modulus, yield strength and structural member dimensions. Then, based on the above results, an efficient approximate method of the global reliability analysis for the offshore platforms is proposed, which converts the implicit nonlinear performance function in the conventional reliability analysis to linear explicit one. Finally, numerical examples of JZ20-2 MSW, JZ20-2NW and JZ20-2 MUQ offshore jacket platforms in the Bohai Bay demonstrate the satisfying efficiency, accuracy and applicability of the proposed method.
Ice load is the dominative load in the design of offshore platforms in the ice zone, and the extreme ice load is the key factor that affects the safety of platforms. The present paper studies the statistical properties of the global resistance and the extreme responses of the jacket platforms in Bohai Bay, considering the randomness of ice load, dead load, steel elastic modulus, yield strength and structural member dimensions. Then, based on the above results, an efficient approximate method of the global reliability analysis for the offshore platforms is proposed, which converts the implicit nonlinear performance function in the conventional reliability analysis to linear explicit one. Finally, numerical examples of JZ20-2 MSW, JZ20-2NW and JZ20-2 MUQ offshore jacket platforms in the Bohai Bay demonstrate the satisfying efficiency, accuracy and applicability of the proposed method.
2008, (2): -.
Abstract:
Recent experimental results have shown that the presence of a steady current can significantly reduce the energy of transmitted waves. In this paper, a theory is developed to study the wave scattering by single or double vertical slotted barriers in the presence of a weak uniform current. The quasi-linear theory is based on an eigenfunction expansion method. Comparisons between theory and existing experimental results for both single slotted barrier and double slotted barriers show satisfactory agreements. In consideration of wave propagation in a weak current it is found that the friction factor used to characterize the head loss at the slotted barrier depends on both the geometry of the slotted barrier and the strength of the steady current.
Recent experimental results have shown that the presence of a steady current can significantly reduce the energy of transmitted waves. In this paper, a theory is developed to study the wave scattering by single or double vertical slotted barriers in the presence of a weak uniform current. The quasi-linear theory is based on an eigenfunction expansion method. Comparisons between theory and existing experimental results for both single slotted barrier and double slotted barriers show satisfactory agreements. In consideration of wave propagation in a weak current it is found that the friction factor used to characterize the head loss at the slotted barrier depends on both the geometry of the slotted barrier and the strength of the steady current.
2008, (2): -.
Abstract:
Based on the previous study results, two higher accuracy explicit solutions to the dispersion equation for wave length are presented in this paper. These two solutions have an accuracy of 0.1% over all wave lengths, which is sufficiently complete for practical application. At the same time, several previous explicit solutions also have been reviewed and compared herein. In comparison with accuracy, the results show that the present two solutions are as good as Wu and Thornton's solution (which has a good accuracy over all wave lengths, but its calculation formula is so complex that it is hard to be used with a hand calculator), and are better than the other solutions, they may be rather useful in practical calculation with a hand calculator or computer.
Based on the previous study results, two higher accuracy explicit solutions to the dispersion equation for wave length are presented in this paper. These two solutions have an accuracy of 0.1% over all wave lengths, which is sufficiently complete for practical application. At the same time, several previous explicit solutions also have been reviewed and compared herein. In comparison with accuracy, the results show that the present two solutions are as good as Wu and Thornton's solution (which has a good accuracy over all wave lengths, but its calculation formula is so complex that it is hard to be used with a hand calculator), and are better than the other solutions, they may be rather useful in practical calculation with a hand calculator or computer.
2008, (2): -.
Abstract:
Mobile offshore double-causeway pier system, a type of seashore unloading equipment, consists of two groups of multiple connected semi-submersible modules. This structure has wide application because most of the middle or mini type of vessels and ships can be moored to it. Based on the analysis of computational methods of multi-body motion response, a hydrodynamic model is set up and the three-dimensional potential theory in finite depth is adopted to calculate the three-dimensional motion response of this system. The double P-M spectrum is used to analyze the motion response in irregular waves. Different wave directions are specially taken into consideration, due to their various effects to the motion response. Furthermore, the calculated result is compared with that of the experiment, and it is proved that sway, heave, pitch and yaw motion are greatly constrained by mooring system. The comparison also indicates that the model can forecast the motion performance of the target, and that the calculated result can also be used as reference in connector and mooring system design.
Mobile offshore double-causeway pier system, a type of seashore unloading equipment, consists of two groups of multiple connected semi-submersible modules. This structure has wide application because most of the middle or mini type of vessels and ships can be moored to it. Based on the analysis of computational methods of multi-body motion response, a hydrodynamic model is set up and the three-dimensional potential theory in finite depth is adopted to calculate the three-dimensional motion response of this system. The double P-M spectrum is used to analyze the motion response in irregular waves. Different wave directions are specially taken into consideration, due to their various effects to the motion response. Furthermore, the calculated result is compared with that of the experiment, and it is proved that sway, heave, pitch and yaw motion are greatly constrained by mooring system. The comparison also indicates that the model can forecast the motion performance of the target, and that the calculated result can also be used as reference in connector and mooring system design.
2008, (2): -.
Abstract:
In this paper, the diffraction of water waves by a vertically floating cylinder in a two-layer luid of a finite depth is studied. Analytical expressions for the hydrodynamic loads on the vertically floating cylinder are obtained by use of the method of eigenfunction expansions. The hydrodynamic loads on the vertically floating cylinder in a two-layer fluid include not only the surge, heave and pitch exciting forces due to the incident wave of the surface-wave mode, but also those due to the incident wave of the internal-wave mode. This is different from the case of a homogenous fluid. Some given examples show that, for a two-layer fluid system with a small density difference, the hydrodynamic loads for the surface-wave mode do not differ significantly from those due to surface waves in a single-layer fluid, but the hydrodynamic loads for the internal-wave mode are important over a wide range of frequencies. Moreover, also considered are the free surface and interface elevations generated by the diffraction wave due to the incident wave of the surface-wave and internal-wave modes, and transfer of energy between modes.
In this paper, the diffraction of water waves by a vertically floating cylinder in a two-layer luid of a finite depth is studied. Analytical expressions for the hydrodynamic loads on the vertically floating cylinder are obtained by use of the method of eigenfunction expansions. The hydrodynamic loads on the vertically floating cylinder in a two-layer fluid include not only the surge, heave and pitch exciting forces due to the incident wave of the surface-wave mode, but also those due to the incident wave of the internal-wave mode. This is different from the case of a homogenous fluid. Some given examples show that, for a two-layer fluid system with a small density difference, the hydrodynamic loads for the surface-wave mode do not differ significantly from those due to surface waves in a single-layer fluid, but the hydrodynamic loads for the internal-wave mode are important over a wide range of frequencies. Moreover, also considered are the free surface and interface elevations generated by the diffraction wave due to the incident wave of the surface-wave and internal-wave modes, and transfer of energy between modes.
2008, (2): -.
Abstract:
A geopulse seismic system was implemented to obtain new information on underlying strata beneath the Yellow River Delta. However, owing to the slipping of sea floor and shallow water (<25 m), free surface-related multiples are conflicted with the flat primaries, which may instruct the interpreters in a wrong way and make wrong conclusions. Owing to the variation of multiple periods, standard anti-multiple techniques may lose their power, such as predictive deconvolution. Surface-related multiple elimination methods are introduced to attenuate the multiples based on the underlying wave-equation principles. The results justified the method on the single-channel geopulse profile, revealing the real nature of the subsurface.
A geopulse seismic system was implemented to obtain new information on underlying strata beneath the Yellow River Delta. However, owing to the slipping of sea floor and shallow water (<25 m), free surface-related multiples are conflicted with the flat primaries, which may instruct the interpreters in a wrong way and make wrong conclusions. Owing to the variation of multiple periods, standard anti-multiple techniques may lose their power, such as predictive deconvolution. Surface-related multiple elimination methods are introduced to attenuate the multiples based on the underlying wave-equation principles. The results justified the method on the single-channel geopulse profile, revealing the real nature of the subsurface.
2008, (2): -.
Abstract:
The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique combining the advantage of the finite element method (FEM) and the boundary element method (BEM) with its unique properties. In this paper, the SBFEM is used for computing wave passing submerged breakwaters, and the reflection coefficient and transmission coefficient are given for the case of wave passing by a rectangular submerged breakwater, a rigid submerged barrier breakwater and a trapezium submerged breakwater in a constant water depth. The results are compared with the analytical solution and experimental results. Good agreement is obtained. Through comparison with the results using the dual boundary element method (DBEM), it is found that the SBFEM can obtain higher accuracy with fewer elements. Many submerged breakwaters with different dimensions are computed by the SBFEM, and the changing character of the reflection coefficient and the transmission coefficient are given in the current study.
The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique combining the advantage of the finite element method (FEM) and the boundary element method (BEM) with its unique properties. In this paper, the SBFEM is used for computing wave passing submerged breakwaters, and the reflection coefficient and transmission coefficient are given for the case of wave passing by a rectangular submerged breakwater, a rigid submerged barrier breakwater and a trapezium submerged breakwater in a constant water depth. The results are compared with the analytical solution and experimental results. Good agreement is obtained. Through comparison with the results using the dual boundary element method (DBEM), it is found that the SBFEM can obtain higher accuracy with fewer elements. Many submerged breakwaters with different dimensions are computed by the SBFEM, and the changing character of the reflection coefficient and the transmission coefficient are given in the current study.
2008, (2): -.
Abstract:
Two-dimensional focusing waves are generated and investigated by numerical method. The numerical model is developed by introducing the wave maker boundary on the high-order spectral (HOS) method proposed by Dommermuth and Yue in 1987 and verified by theoretical and experimental data. Some cases of focusing waves considering different parameters such as assumed focusing amplitudes, frequency bandwidth, central frequency and frequency spectrum are generated. Characteristics of the focusing wave including surface elevations, the maximum crest, shift of focusing points and frequency spectra are discussed. The results show that the focusing wave characteristics are strongly affected by focusing amplitudes, frequency bandwidth, central frequency and frequency spectrum.
Two-dimensional focusing waves are generated and investigated by numerical method. The numerical model is developed by introducing the wave maker boundary on the high-order spectral (HOS) method proposed by Dommermuth and Yue in 1987 and verified by theoretical and experimental data. Some cases of focusing waves considering different parameters such as assumed focusing amplitudes, frequency bandwidth, central frequency and frequency spectrum are generated. Characteristics of the focusing wave including surface elevations, the maximum crest, shift of focusing points and frequency spectra are discussed. The results show that the focusing wave characteristics are strongly affected by focusing amplitudes, frequency bandwidth, central frequency and frequency spectrum.
2008, (2): -.
Abstract:
The adoption of slotted breakwaters can be an ideal option in the protection of very large near-shore floating structures that may extend offshore to a considerable water depth. In this paper, we experimently investigated the behaviour of wave transmission and reflection coefficients of double slotted barriers in the presence of a steady opposing current. The experimental results show that opposing currents have only minor effects on wave reflection, but can significantly reduce the wave transmission through double slotted barriers. The experimental results suggest that coastal currents should be taken into consideration for an economical design of slotted breakwaters.
The adoption of slotted breakwaters can be an ideal option in the protection of very large near-shore floating structures that may extend offshore to a considerable water depth. In this paper, we experimently investigated the behaviour of wave transmission and reflection coefficients of double slotted barriers in the presence of a steady opposing current. The experimental results show that opposing currents have only minor effects on wave reflection, but can significantly reduce the wave transmission through double slotted barriers. The experimental results suggest that coastal currents should be taken into consideration for an economical design of slotted breakwaters.
2008, (2): -.
Abstract:
This paper presents two kinematic failure mechanisms of three-dimensional rectangular footing resting on homogeneous undrained clay foundation under uniaxial vertical loading and uniaxial moment loading. The failure mechanism under vertical loading comprises a plane strain Prandtl-type mechanism over the central part of the longer side, and the size of the mechanism gradually reduces at the ends of the longer side and over the shorter side as the corner of rectangular footing is being approached where the direction of soil motion remains normal to each corresponding side respectively. The failure mechanism under moment loading comprises a plane strain scoop sliding mechanism over the central part of the longer side, and the radius of scoop sliding mechanism increases linearly at the ends of the longer side. On the basis of the kinematic failure mechanisms mentioned above, the vertical ultimate bearing capacity and the ultimate bearing capacity against moment or moment ultimate bearing capacity are obtained by use of upper bound limit analysis theory. At the same time, numerical analysis results, Skempton's results and Salgado et al.'s results are compared with this upper bound solution. It shows that the presented failure mechanisms and plastic limit analysis predictions are validated. In order to investigate the behaviors of undrained clay foundation beneath the rectangular footing subjected to the combined loadings, numerical analysis is adopted by virtue of the general-purpose FEM software ABAQUS, where the clay is assumed to obey the Mohr-Coulomb yielding criterion. The failure envelope and the ultimate bearing capacity are achieved by the numerical analysis results with the varying aspect ratios from length L to breadth B of the rectangular footing. The failure mechanisms of rectangular footing which are subjected to the combined vertical loading V and horizontal loading H (Vertical loading V and moment loading M, and horizontal loading H and moment loading M respectively are observed in the finite element analysis.) is explained by use of the upper bound plasticity limit analysis theory. Finally, the reason of eccentricity of failure envelope in H-M loading space is given in this study, which can not be explained by use of the traditional 'swipe test'.
This paper presents two kinematic failure mechanisms of three-dimensional rectangular footing resting on homogeneous undrained clay foundation under uniaxial vertical loading and uniaxial moment loading. The failure mechanism under vertical loading comprises a plane strain Prandtl-type mechanism over the central part of the longer side, and the size of the mechanism gradually reduces at the ends of the longer side and over the shorter side as the corner of rectangular footing is being approached where the direction of soil motion remains normal to each corresponding side respectively. The failure mechanism under moment loading comprises a plane strain scoop sliding mechanism over the central part of the longer side, and the radius of scoop sliding mechanism increases linearly at the ends of the longer side. On the basis of the kinematic failure mechanisms mentioned above, the vertical ultimate bearing capacity and the ultimate bearing capacity against moment or moment ultimate bearing capacity are obtained by use of upper bound limit analysis theory. At the same time, numerical analysis results, Skempton's results and Salgado et al.'s results are compared with this upper bound solution. It shows that the presented failure mechanisms and plastic limit analysis predictions are validated. In order to investigate the behaviors of undrained clay foundation beneath the rectangular footing subjected to the combined loadings, numerical analysis is adopted by virtue of the general-purpose FEM software ABAQUS, where the clay is assumed to obey the Mohr-Coulomb yielding criterion. The failure envelope and the ultimate bearing capacity are achieved by the numerical analysis results with the varying aspect ratios from length L to breadth B of the rectangular footing. The failure mechanisms of rectangular footing which are subjected to the combined vertical loading V and horizontal loading H (Vertical loading V and moment loading M, and horizontal loading H and moment loading M respectively are observed in the finite element analysis.) is explained by use of the upper bound plasticity limit analysis theory. Finally, the reason of eccentricity of failure envelope in H-M loading space is given in this study, which can not be explained by use of the traditional 'swipe test'.
2008, (2): -.
Abstract:
According to the characteristics of deepwater top tensioned risers, a simplified model is presented to predict the multi-modal response of vortex-induced vibration (VIV) in non-uniform flow based on energy equilibrium theory and the experimental data from VIV self-excited and forced oscillations of rigid cylinders. The response amplitude of each mode is determined by a balance between the energy fed into the riser over the lock-in regions and the energy dissipated by the fluid damping over the remainders. Compared with the previous prediction models, this method can take fully account of the intrinsic nature of VIV for low mass ratio structures on lock-in regions, added mass and nonlinear fluid damping effect, etc. Moreover, it is the first time to propose the accurate calculating procedure for VIV amplitude correction factor by solving energy equilibrium equation and a closed form solution is presented for the case of a riser of uniform mass and cross-section oscillating in a uniform flow. The predicted values show a reasonable agreement with VIV experiments of riser models in stepped and sheared currents.
According to the characteristics of deepwater top tensioned risers, a simplified model is presented to predict the multi-modal response of vortex-induced vibration (VIV) in non-uniform flow based on energy equilibrium theory and the experimental data from VIV self-excited and forced oscillations of rigid cylinders. The response amplitude of each mode is determined by a balance between the energy fed into the riser over the lock-in regions and the energy dissipated by the fluid damping over the remainders. Compared with the previous prediction models, this method can take fully account of the intrinsic nature of VIV for low mass ratio structures on lock-in regions, added mass and nonlinear fluid damping effect, etc. Moreover, it is the first time to propose the accurate calculating procedure for VIV amplitude correction factor by solving energy equilibrium equation and a closed form solution is presented for the case of a riser of uniform mass and cross-section oscillating in a uniform flow. The predicted values show a reasonable agreement with VIV experiments of riser models in stepped and sheared currents.
2008, (2): -.
Abstract:
Experiments are carried out to study the characteristics of active bubbles entrained by breaking waves as these propagate over an abruptly topographical change or a submerged breakwater. Underwater sounds generated by the entrained air bubbles are detected by a hydrophone connected to a charge amplifier and a data acquisition system. The size distribution of the bubbles is then determined inversely from the received sound frequencies. The sound signals are converted from time domain to time-frequency domain by applying Gabor transform. The number of bubbles with different sizes are counted from the signal peaks in the time-frequency domain. The characteristics of the bubbles are in terms of bubble size spectra, which account for the variation in bubble probability density related to the bubble radius r. The experimental data demonstrate that the bubble probability density function shows a-2.39 power-law scaling with radius for r>0.8 mm, and a-1.11 power law for r<0.8 mm.
Experiments are carried out to study the characteristics of active bubbles entrained by breaking waves as these propagate over an abruptly topographical change or a submerged breakwater. Underwater sounds generated by the entrained air bubbles are detected by a hydrophone connected to a charge amplifier and a data acquisition system. The size distribution of the bubbles is then determined inversely from the received sound frequencies. The sound signals are converted from time domain to time-frequency domain by applying Gabor transform. The number of bubbles with different sizes are counted from the signal peaks in the time-frequency domain. The characteristics of the bubbles are in terms of bubble size spectra, which account for the variation in bubble probability density related to the bubble radius r. The experimental data demonstrate that the bubble probability density function shows a-2.39 power-law scaling with radius for r>0.8 mm, and a-1.11 power law for r<0.8 mm.
2008, (2): -.
Abstract:
A study of tsunami events in the East (Japan) Sea using continuous Galerkin finite element model, aiming at reproducing tsunami waves generated by underwater earthquakes in 1983 and 1993 respectively has been performed focusing on the geographic extent of a topographic feature in the East (Japan) Sea. Numerical models can be the proper tools to study the combined effects of realistic topography. Subsequently, using the FEM based two-dimensional model we have simulated the smoothed and flattened topographic effects by removal of Yamato Rise and seamounts for the cases of tthe 1983 Central region earthquake tsunami and the 1993 southwestern Hokkaido earthquake tsunami. The results have shown that there will be higher tsunamis along the eastern coasts of Korea in general except some areas, like Sokcho with removal of topographic highs, thus providing complicated bottom topography of the East (Japan) Sea as effective tsunami energy scattering.
A study of tsunami events in the East (Japan) Sea using continuous Galerkin finite element model, aiming at reproducing tsunami waves generated by underwater earthquakes in 1983 and 1993 respectively has been performed focusing on the geographic extent of a topographic feature in the East (Japan) Sea. Numerical models can be the proper tools to study the combined effects of realistic topography. Subsequently, using the FEM based two-dimensional model we have simulated the smoothed and flattened topographic effects by removal of Yamato Rise and seamounts for the cases of tthe 1983 Central region earthquake tsunami and the 1993 southwestern Hokkaido earthquake tsunami. The results have shown that there will be higher tsunamis along the eastern coasts of Korea in general except some areas, like Sokcho with removal of topographic highs, thus providing complicated bottom topography of the East (Japan) Sea as effective tsunami energy scattering.
2008, (2): -.
Abstract:
In the past decades, two large scale coastal engineering projects have been carried out in the Deep Bay surrounded by Shenzhen City and Hong Kong Special Administrative Region. One project is Shenzhen River channel regulation and the other is the sea reclamation along the seashore on the Shenzhen side. The two projects are very close to the two national nature reserves, specifically Futian in Shenzhen and Mai Po in Hong Kong, which are important wetland ecosystems worldwide. This paper aims to identify and monitor the mangrove wetland changes with time series of Landsat Thematic Mapper images pre and post to the two engineering projects being launched. Coupled analysis of the image interpretation results and tidal data acquired at the same time in the context of the two works reveals that the mangrove wetland area has increased from year 1989 to 1994, and has changed little from year 1994 to 2002. Binary coding is applied to reveal the distribution image of mangrove at each phase, and the coding image shows that the construction of the two coastal engineering projects has caused frequent changes in mangrove spatial distribution. The study also shows that the change is not significant regarding to the precision of the method and the natural evolution of mangrove wetland, and the projects do not cause apparently influences upon the two national mangrove conservation zones at least for the research time period.
In the past decades, two large scale coastal engineering projects have been carried out in the Deep Bay surrounded by Shenzhen City and Hong Kong Special Administrative Region. One project is Shenzhen River channel regulation and the other is the sea reclamation along the seashore on the Shenzhen side. The two projects are very close to the two national nature reserves, specifically Futian in Shenzhen and Mai Po in Hong Kong, which are important wetland ecosystems worldwide. This paper aims to identify and monitor the mangrove wetland changes with time series of Landsat Thematic Mapper images pre and post to the two engineering projects being launched. Coupled analysis of the image interpretation results and tidal data acquired at the same time in the context of the two works reveals that the mangrove wetland area has increased from year 1989 to 1994, and has changed little from year 1994 to 2002. Binary coding is applied to reveal the distribution image of mangrove at each phase, and the coding image shows that the construction of the two coastal engineering projects has caused frequent changes in mangrove spatial distribution. The study also shows that the change is not significant regarding to the precision of the method and the natural evolution of mangrove wetland, and the projects do not cause apparently influences upon the two national mangrove conservation zones at least for the research time period.
2008, (2): -.
Abstract:
Experiments are carried out to study the characteristics of active bubbles entrained by breaking waves as these propagate over an abruptly topographical change or a submerged breakwater. Underwater sounds generated by the entrained air bubbles are detected by a hydrophone connected to a charge amplifier and a data acquisition system. The size distribution of the bubbles is then determined inversely from the received sound frequencies. The sound signals are converted from time domain to time-frequency domain by applying Gabor transform. The number of bubbles with different sizes are counted from the signal peaks in the time-frequency domain. The characteristics of the bubbles are in terms of bubble size spectra, which account for the variation in bubble probability density related to the bubble radius r. The experimental data demonstrate that the bubble probability density function shows a-2.39 power-law scaling with radius for r>0.8 mm, and a-1.11 power law for r<0.8 mm.
Experiments are carried out to study the characteristics of active bubbles entrained by breaking waves as these propagate over an abruptly topographical change or a submerged breakwater. Underwater sounds generated by the entrained air bubbles are detected by a hydrophone connected to a charge amplifier and a data acquisition system. The size distribution of the bubbles is then determined inversely from the received sound frequencies. The sound signals are converted from time domain to time-frequency domain by applying Gabor transform. The number of bubbles with different sizes are counted from the signal peaks in the time-frequency domain. The characteristics of the bubbles are in terms of bubble size spectra, which account for the variation in bubble probability density related to the bubble radius r. The experimental data demonstrate that the bubble probability density function shows a-2.39 power-law scaling with radius for r>0.8 mm, and a-1.11 power law for r<0.8 mm.
2008, (2): -.
Abstract:
As a popular solution for mooring an FPSO (Floating Production, Storage and Offloading) permanently in shallow water, the soft yoke mooring system has been widely used in ocean oil production activities in the Bohai Bay of China. In order to simulate the interaction mechanism and conduct dynamic analysis of the soft yoke mooring system, a theoretical model with basic dynamic equations is established. A numerical iteration algorithm based on error estimation is developed to solve the equations and calculate the dynamic response of the mooring system due to FPSO motions. Validation is conducted by wave basin experimentation. It is shown that the numerical simulation takes only a few iteration times and the final errors are small. Furthermore, the calculated results of both the static and dynamic responses agree well with those ones obtained by the model test. It indicates that the efficiency, the precision, the reliability and the validity of the developed numerical algorithm and program are rather good. It is proposed to develop a real-time monitoring system to further monitor the dynamic performance of the FPSO with a soft yoke mooring system under various real sea environments.
As a popular solution for mooring an FPSO (Floating Production, Storage and Offloading) permanently in shallow water, the soft yoke mooring system has been widely used in ocean oil production activities in the Bohai Bay of China. In order to simulate the interaction mechanism and conduct dynamic analysis of the soft yoke mooring system, a theoretical model with basic dynamic equations is established. A numerical iteration algorithm based on error estimation is developed to solve the equations and calculate the dynamic response of the mooring system due to FPSO motions. Validation is conducted by wave basin experimentation. It is shown that the numerical simulation takes only a few iteration times and the final errors are small. Furthermore, the calculated results of both the static and dynamic responses agree well with those ones obtained by the model test. It indicates that the efficiency, the precision, the reliability and the validity of the developed numerical algorithm and program are rather good. It is proposed to develop a real-time monitoring system to further monitor the dynamic performance of the FPSO with a soft yoke mooring system under various real sea environments.
ScholarOne Manuscripts Log In
Current Issue
- Volume 38
- Issue 5
- October 2024
- Editor-in-Chief:
- Superintended by:
CHINA ASSOCIATION FOR SCIENCE AND TECHNOLOGY
- Sponsored by:
Chinese Ocean Engineering Society (COES)
- Edited by:
Nanjing Hydraulic Research Institute