亚洲成狼|高清国产传媒|特级一级毛片|麻豆印象传媒是哪里的|果冻传媒88av|麻豆传媒之双胞胎系列|麻豆映画传媒mofy ep6|婷婷啪|四虎东方影库|免费av片,麻豆传媒作品微信公众号,91制片厂果冻传媒安娜,麻豆传媒徐韵姗在线观看

ISSN  0890-5487 CN 32-1441/P

2003 Vol.(3)

Display Mode:          |     

Fast Evaluation of Time-Domain Green Function for Finite Water Depth
2003, (3): -.
[Abstract](1096) [PDF 0KB](2)
Abstract:
For computation of large amplitude motions of ships fastened to a dock, a fast evaluation scheme is implemented for computation of the time-domain Green function for finite water depth. Based on accurate evaluation of the Green function directly, a fast approximation method for the Green function is developed by use of Chebyshev polynomials. Examinations are carried out of the accuracy of the Green function and its derivatives from the scheme. It is shown that when an appropriate number of polynomial terms are used, very accurate approximation can be obtained.
Effect of Sample Disturbance on Unconfined Compression Strength of Natural Marine Clays
2003, (3): -.
[Abstract](1118) [PDF 0KB](0)
Abstract:
Quantitatively correcting the unconfined compressive strength for sample disturbance is an important research project in the practice of ocean engineering and geotechnical engineering. In this study, the specimens of undisturbed natural marine clay obtained from the same depth at the same site were deliberately disturbed to different levels. Then, the specimens with different extents of sample disturbance were trimmed for both oedometer tests and unconfined compression tests. The degree of sample disturbance SD is obtained from the oedometer test data. The relationship between the unconfined compressive strength q u and SD is studied for investigating the effect of sample disturbance on q u. It is found that the value of q u decreases linearly with the increase in SD. Then, a simple method of correcting q u for sample disturbance is proposed. Its validity is also verified through analysis of the existing published data.
Hydroelastic Response Analysis of Mat-Like VLFS over A Plane Slope in Head Seas
2003, (3): -.
[Abstract](1063) [PDF 0KB](1)
Abstract:
Very large floating structures (VLFS) have an extremely large size of several kilometers in length, thus, the environment at one end of the platform may be different from that at the other end. The importance of such an inhomogeneous environment to the hydroelastic response of a VLFS is of obvious concern for practical application. Some studies have been carried out to investigate the effects of shoreline proximity, breakwaters and harbor walls. In this paper, the impact of the variable depth on the hydroelastic responses of a VLFS is investigated. For simplicity, an ascending plane slope is taken to simulate the varying bottom although the method is capable of treating a bottom of arbitrary variation. The long wave theory and the thin plate theory are employed to model the wave field and the mat-like VLFS respectively. The finite difference method is used to numerically solve the boundary value problem. The results for the zero inclination slope are compared with experimental data and an analytical method to validate the present numerical method. Finally the effect of the inclination of the slope on reflection and transmission coefficients and plate deflections are investigated thoroughly.
Vibration and Acoustic Radiation from Submerged Spherical Double-Shell
2003, (3): -.
[Abstract](1552) [PDF 0KB](1)
Abstract:
Risk Assessment for Tuzla Naval Base Breakwater
2003, (3): -.
[Abstract](1028) [PDF 0KB](0)
Abstract:
Fuzzy Fatigue Reliability Analysis of Offshore Platforms in Ice-Infested Waters
2003, (3): -.
[Abstract](1072) [PDF 0KB](0)
Abstract:
The calculation of fatigue stress ranges due to random waves and ice loads on offshore structures is discussed, and the corresponding accumulative fatigue damages of the structural members are evaluated. To evaluate the fatigue damage to the structures more accurately, the Miner rule is modified considering the fuzziness of the concerned parameters, and a new model for fuzzy fatigue reliability analysis of offshore structures members is developed. Furthermore, an assessment method for predicting the dynamics of the fuzzy fatigue reliability of structural members is provided.
Numerical Wave Flume Study on Wave Motion Around Submerged Plates
2003, (3): -.
[Abstract](963) [PDF 0KB](0)
Abstract:
A New Probability of Detection Model for Updating Crack Distribution of Offshore Structures
2003, (3): -.
[Abstract](1111) [PDF 0KB](0)
Abstract:
There exists model uncertainty of probability of detection for inspecting ship structures with nondestructive inspection techniques. Based on a comparison of several existing probability of detection (POD) models, a new probability of detection model is proposed for the updating of crack size distribution. Furthermore, the theoretical derivation shows that most existing probability of detection models are special cases of the new probability of detection model. The least square method is adopted for determining the values of parameters in the new POD model. This new model is also compared with other existing probability of detection models. The results indicate that the new probability of detection model can fit the inspection data better. This new probability of detection model is then applied to the analysis of the problem of crack size updating for offshore structures. The Bayesian updating method is used to analyze the effect of probability of detection models on the posterior distribution of a crack size. The results show that different probabilities of detection models generate different posterior distributions of a crack size for offshore structures.
Uplift Pressure of Waves on A Horizontal Plate
2003, (3): -.
[Abstract](1023) [PDF 0KB](1)
Abstract:
Uplift pressures of waves acting on horizontal plates are the important basis for design of maritime hollow-trussed structures. In this paper, an experimental study on the uplift pressures of waves on a horizontal plate is conducted by use of a series of model tests. Detailed analysis has been given to the formation mechanism of uplift pressures of waves. It is considered that the impact pressure intensity is mainly affected by geometrical factors (tangential angle of waves), dynamic factors (wave height, wave velocity, etc.) and air cushion. Based on the test results, an equation for calculation of the maximum uplift pressure intensity of waves on a plate is presented. A large quantity of test data shows good agreement of the present equation with the test results.
A Study on the Dynamic Analysis of A Tracked Vehicle for Ocean Mining on the Deep Seabed
2003, (3): -.
[Abstract](1074) [PDF 0KB](1)
Abstract:
A study is presented on the dynamic analysis of a tracked vehicle for mining on the deep seabed of very soft soil. Equations for the interaction between the track and extremely soft seabed are employed to develop a track/soil interaction module called TVAS. The vehicle is modeled as a multibody dynamic system by the use of a multibody dynamic analysis program. The module developed is cooperated with the multibody dynamic analysis program with a user-defined subroutine. The dynamic behavior and the conceptual design of the mining vehicle on the deep seabed are investigated.
Effect of Sea Level Variation on Tidal Characteristic Values for the East China Sea
2003, (3): -.
[Abstract](1116) [PDF 0KB](2)
Abstract:
Tidal waves in the East China Sea are simulated numerically with POM(Princeton Ocean Model) model for normal mean sea level, 30 cm higher, 60 cm higher, and 100 cm higher, respectively, and the simulated result is compared with the harmonic analysis result of hourly sea level data from 19 tide gauges for more than 19 years. It is indicated that the long-term mean sea level variation affects notably tidal waves in this region. Generally, the tidal amplitude increases when the mean sea level rises, but this relationship may be inverse for some sea areas. The maximal variation of tidal amplitude takes place in the zones near the Fujian coast and the Zhejiang coast, rather than the shallowest Bohai Sea. The maximum increase of M2 amplitude can exceed about 15 cm corresponding to the 60 cm rise of the mean sea level along the Fujian coast. The other regions with large variations of tidal amplitude are those along the Jiangsu coast, the south-east coast of Shandong, and the south-east coast of Dalian. The propagation of tidal waves is also related to mean sea level variation, and the tidal phase-lag decreases generally when the mean sea level rises. Almost all the regions where the tidal phase-lag increases with rising mean sea level are close to amphidromic points, meanwhile the spatial area of such regions is very small. Because the influence of mean sea level variation upon tidal waves is spatially marked, such spatial effect should be considered in calculation of the tidal characteristic value and engineering water level. In the region where the amplitudes of the major tidal constituents increase, the probable maximum high water level becomes higher, the probable maximum low water level becomes lower, and both design water level andcheck water level increase obviously. For example, the design water level at Xiamen increases by 13.5 cm due to the variation of tidal waves when the mean sea level rises 60 cm, the total increase of design water level being 73.5 cm.
Neural Network-Based Active Control for Offshore Platforms
2003, (3): -.
[Abstract](1106) [PDF 0KB](0)
Abstract:
A new active control scheme, based on neural network, for the suppression of oscillation in multiple-degree-of-freedom (MDOF) offshore platforms, is studied in this paper. With the main advantages of neural network, i.e. the inherent robustness, fault tolerance, and generalized capability of its parallel massive interconnection structure, the active structural control of offshore platforms under random waves is accomplished by use of the BP neural network model. The neural network is trained offline with the data generated from numerical analysis, and it simulates the process of Classical Linear Quadratic Regular Control for the platform under random waves. After the learning phase, the trained network has learned about the nonlinear dynamic behavior of the active control system, and is capable of predicting the active control forces of the next time steps. The results obtained show that the active control is feasible and effective, and it finally overcomes time delay owing to the robustness, fault tolerance, and generalized capability of artificial neural network.
Structural Design and Protective Methods for the 100 kW Shoreline Wave Power Station
2003, (3): -.
[Abstract](1097) [PDF 0KB](1)
Abstract:
The structural design and protective methods for the 100 kW shoreline wave power station in China are described in detail. The proper structural type is designed for effective minimization of wave loads and bending stress. Various protective devices are adopted to protect the station in the extreme conditions against excessive power of airflow, excessive torsion of the shaft, over-pressure of the chamber, over-speed of rotation, power failure, and so on. It turns out that the structural design and protective methods for the 100 kW shoreline wave power station are successful.
Wave Reflection Coefficient Spectrum
2003, (3): -.
[Abstract](1050) [PDF 0KB](1)
Abstract:
The wave reflection coefficient frequency spectrum and directional spectrum for concrete face slope breakwaters and rubble mound breakwaters are investigated through physical model tests in the present study. The reflection coefficients of oblique irregular waves are analyzed by the Modified Two-Point Method (MTPM) proposed by the authors. The results show that the wave reflection coefficient decreases with increasing wave frequency and incident angle or decreasing structure slope. The reflection coefficient frequency spectrum and its variation with Iribarren number are given in this paper. The paper also suggests an empirical 3-dimensional reflection coefficient spectrum, i.e. reflection coefficient directional spectrum, which can be used to illustrate quantitatively the variation of reflection coefficient with the incident angle and the Iribarren number for oblique irregular waves.

水利部交通運(yùn)輸部國家能源局南京水利科學(xué)研究院 《中國海洋工程》編輯部 版權(quán)所有

Address: 34 Hujuguan, Nanjing 210024, China Pos: 210024 Tel: 025-85829388 E-mail: [email protected]

Support by Beijing Renhe Information Technology Co. Ltd E-mail: [email protected]

蘇ICP備05007122號-5