1998 Vol.(2)
Display Mode: |
1998, (2): -.
Abstract:
The impact buckling of a laminated composite bar is investigated in case of one of its ends moving due to axial impact compression. The governing equations considering the first- order shear deformation effect are derived by the Hamilton principle and solved by the finite difference method. The critical axial shortness is determined by the B - R cirterion. The given example is used to highlight the influences of initial imperfection, impact velocity, stress wave and coupled stiffness. It is found that the unsymmetrically laminated bar has a quite different dynamic buckling behaviour from that of the symmetrically laminated bar.
The impact buckling of a laminated composite bar is investigated in case of one of its ends moving due to axial impact compression. The governing equations considering the first- order shear deformation effect are derived by the Hamilton principle and solved by the finite difference method. The critical axial shortness is determined by the B - R cirterion. The given example is used to highlight the influences of initial imperfection, impact velocity, stress wave and coupled stiffness. It is found that the unsymmetrically laminated bar has a quite different dynamic buckling behaviour from that of the symmetrically laminated bar.
1998, (2): -.
Abstract:
The degradation strength of soils under cyclic loading is studied and a method for determining the cyclic degradation strength with cyclic triaxial tests is given in the paper. Furthermore, a dummy static method for estimating the undrained bearing capacity for offshore soft foundation under wave loads is developed. It can consider the effect of the difference of cyclic stress for different parts of the foundation on both the degradation strength of the foundation soil and the bearing capacity so that the estimated result can better reflect the real condition of foundation under cyclic loading. The method can be applied to plane and space problem.
The degradation strength of soils under cyclic loading is studied and a method for determining the cyclic degradation strength with cyclic triaxial tests is given in the paper. Furthermore, a dummy static method for estimating the undrained bearing capacity for offshore soft foundation under wave loads is developed. It can consider the effect of the difference of cyclic stress for different parts of the foundation on both the degradation strength of the foundation soil and the bearing capacity so that the estimated result can better reflect the real condition of foundation under cyclic loading. The method can be applied to plane and space problem.
1998, (2): -.
Abstract:
1998, (2): -.
Abstract:
The nonlinear capillary-gravity wave produced by a vertically oscillating plate, in which the contact-angle model is considered, is studied by use of the Boundary Integral Equation Method (BIEM). The present numerical experiment shows that the code is robust and efficient for modeling the generation and propagation of capillary- gravity waves. It is found that the wave heights of stationary periodic nonlinear waves radiated away from the plate are dependent on the parameters involved in the contact-angle model. The effect of the contact-angle hysteresis and the nonlinearity of capillary-gravity waves on the wave profile is discussed in the paper.
The nonlinear capillary-gravity wave produced by a vertically oscillating plate, in which the contact-angle model is considered, is studied by use of the Boundary Integral Equation Method (BIEM). The present numerical experiment shows that the code is robust and efficient for modeling the generation and propagation of capillary- gravity waves. It is found that the wave heights of stationary periodic nonlinear waves radiated away from the plate are dependent on the parameters involved in the contact-angle model. The effect of the contact-angle hysteresis and the nonlinearity of capillary-gravity waves on the wave profile is discussed in the paper.
1998, (2): -.
Abstract:
-In this paper a simple and efficient implicit finite-difference scheme is used for depth-averagedtwo-dimensional storm surge model.This finite-difference scheme is simpler and more efficient than the wi-dely-used ADI scheme.Accuracy analysis and stability analysis indicate that the scheme has two-order ac-curacy and is unconditionally stable when the grid size is constant.The present analysis results show thatthe scheme is of higher numerical accuracy than that introduced by Maa(1990).After tested by ideal mod-els,a calculation example of a real typhoon surge is carried out,the results of the numerical simulation co-incide well with the observed data and the accuracy is sufficient for engineering applications.
-In this paper a simple and efficient implicit finite-difference scheme is used for depth-averagedtwo-dimensional storm surge model.This finite-difference scheme is simpler and more efficient than the wi-dely-used ADI scheme.Accuracy analysis and stability analysis indicate that the scheme has two-order ac-curacy and is unconditionally stable when the grid size is constant.The present analysis results show thatthe scheme is of higher numerical accuracy than that introduced by Maa(1990).After tested by ideal mod-els,a calculation example of a real typhoon surge is carried out,the results of the numerical simulation co-incide well with the observed data and the accuracy is sufficient for engineering applications.
1998, (2): -.
Abstract:
This paper reviews the history of coast evolution and coastal protection in the area of the abandoned Yellow River mouth in Jiangsu Province, analyzes the erosion characteristics and dynamic environment, evaluates the efficiency of coastal protection engineering works and designs the dimensions of the main seadike and offshore submerged dam. A gerneral scheme of shore protection for this area is proposed.
This paper reviews the history of coast evolution and coastal protection in the area of the abandoned Yellow River mouth in Jiangsu Province, analyzes the erosion characteristics and dynamic environment, evaluates the efficiency of coastal protection engineering works and designs the dimensions of the main seadike and offshore submerged dam. A gerneral scheme of shore protection for this area is proposed.
1998, (2): -.
Abstract:
Offshore structures will encounter serious environmental load, so it is important to study the structural system reliability and to evaluate the structural component safety rank. In this paper, the bracnch-and-bound method is adopted to search the main failure path, and the Ditlevsen bound method is used to calculate the system failure probability. The structure is then assessed by the fuzzy comprehensive assessment method, which evaluates the structural component safety rank. The ultimate equation of the tubular cross- section is analyzed on the basis of ultimate stregnth analysis. The influence of effect coefficients on the structural system failure probability is investigated, and basic results are obtained. A general program for spatial frame structures by means of the above method is developed, and verified by the numerical examples.
Offshore structures will encounter serious environmental load, so it is important to study the structural system reliability and to evaluate the structural component safety rank. In this paper, the bracnch-and-bound method is adopted to search the main failure path, and the Ditlevsen bound method is used to calculate the system failure probability. The structure is then assessed by the fuzzy comprehensive assessment method, which evaluates the structural component safety rank. The ultimate equation of the tubular cross- section is analyzed on the basis of ultimate stregnth analysis. The influence of effect coefficients on the structural system failure probability is investigated, and basic results are obtained. A general program for spatial frame structures by means of the above method is developed, and verified by the numerical examples.
1998, (2): -.
Abstract:
A comprehensive strength monitoring system used on a fixed jacket platform is presented in this paper. The long-term monitoring of W-11-4A platform achieved. Structural responses (strain and acceleration) at selected locations, as well as associated environmental parameters, have been obtained. The emphasis of the paper is placed on the system design, and the instrumentation and operation methodology employed in the monitoring of the structural responses. The performance of the system and the characteristic results obtained during its 13-month operation are also summarized.
A comprehensive strength monitoring system used on a fixed jacket platform is presented in this paper. The long-term monitoring of W-11-4A platform achieved. Structural responses (strain and acceleration) at selected locations, as well as associated environmental parameters, have been obtained. The emphasis of the paper is placed on the system design, and the instrumentation and operation methodology employed in the monitoring of the structural responses. The performance of the system and the characteristic results obtained during its 13-month operation are also summarized.
1998, (2): -.
Abstract:
Vacuum loading has been examined as a way of preparing uniformly consolidated soft clay samples. The facility and loading procedure are described in this paper. An analytical solution to the three dimensional consolidation equation is derived for estimating the degree of consolidation of the soil sample with vacuum loading. The given example shows that the predicted degree of consolidation of a soft clay bulk with vacuum loading is close to that measured in the consolidation process.
Vacuum loading has been examined as a way of preparing uniformly consolidated soft clay samples. The facility and loading procedure are described in this paper. An analytical solution to the three dimensional consolidation equation is derived for estimating the degree of consolidation of the soil sample with vacuum loading. The given example shows that the predicted degree of consolidation of a soft clay bulk with vacuum loading is close to that measured in the consolidation process.
1998, (2): -.
Abstract:
First, Wirsching's model, which is widely employed in fatigue reliability anlysis of marine and offshore structures, is analysed systematically. It is found that the very important random variable A in Wirsching's model can not be directly determined from fatigue experiment because of the irreversibility of fatigue test, and in fact, what Wirsching studied from testing results is not A but a of the statistical Miner's rule. Second, by use of the statistical Miner's rule, a modified Wirsching's model is proposed. Thirdly and more importantly, based on the two-dimensional probabilistic Miner's rule, a new model is established for fatigue reliability analysis of structural components subjected to specified cyclic loading of variable amplitude or stochastic time history. In the end, an example is presented, from which it will be seen that this new model is very convenient to use and feasible to engineering practice.
First, Wirsching's model, which is widely employed in fatigue reliability anlysis of marine and offshore structures, is analysed systematically. It is found that the very important random variable A in Wirsching's model can not be directly determined from fatigue experiment because of the irreversibility of fatigue test, and in fact, what Wirsching studied from testing results is not A but a of the statistical Miner's rule. Second, by use of the statistical Miner's rule, a modified Wirsching's model is proposed. Thirdly and more importantly, based on the two-dimensional probabilistic Miner's rule, a new model is established for fatigue reliability analysis of structural components subjected to specified cyclic loading of variable amplitude or stochastic time history. In the end, an example is presented, from which it will be seen that this new model is very convenient to use and feasible to engineering practice.
1998, (2): -.
Abstract:
Marine structures operating in natural ocean environment are subjected to various stochastic loads. For design of the marine structures, the most important task is to determine environmental load design criterion. This paper presents a method to determine the optimum environmental load design criterion for marine structures. This method is based on the investment and benefit analysis and it can reach the design purpose of decreasing total costs during the service life of the structures and increasing economic benefits.
Marine structures operating in natural ocean environment are subjected to various stochastic loads. For design of the marine structures, the most important task is to determine environmental load design criterion. This paper presents a method to determine the optimum environmental load design criterion for marine structures. This method is based on the investment and benefit analysis and it can reach the design purpose of decreasing total costs during the service life of the structures and increasing economic benefits.
1998, (2): -.
Abstract:
A three-step finite element method (FEM) together with Large Eddy Simulation (LES) is applied to incompressible turbulent flow around seabed pipelines at relatively high Reynolds numbers. Both two- dimensional and three- dimensional numerical simulation is carried out to determine the three-dimensional effect. The results of numerical simulation agree quite well with the wave forces acting on pipeline models measured in physical model test.
A three-step finite element method (FEM) together with Large Eddy Simulation (LES) is applied to incompressible turbulent flow around seabed pipelines at relatively high Reynolds numbers. Both two- dimensional and three- dimensional numerical simulation is carried out to determine the three-dimensional effect. The results of numerical simulation agree quite well with the wave forces acting on pipeline models measured in physical model test.
ScholarOne Manuscripts Log In
Current Issue
- Volume 38
- Issue 5
- October 2024
- Editor-in-Chief:
- Superintended by:
CHINA ASSOCIATION FOR SCIENCE AND TECHNOLOGY
- Sponsored by:
Chinese Ocean Engineering Society (COES)
- Edited by:
Nanjing Hydraulic Research Institute