ISSN  0890-5487 CN 32-1441/P

Citation: Xiao-guo ZHOU, Yong CHENG and Su-yong PAN. Time-Domain Higher-Order Boundary Element Method for Simulating High Forward-Speed Ship Motions in Waves[J]. China Ocean Engineering, 2024, 38(5): 904-914. doi: 10.1007/s13344-024-0071-5 shu

Time-Domain Higher-Order Boundary Element Method for Simulating High Forward-Speed Ship Motions in Waves

  • Corresponding author: Yong CHENG, chengyong@just.edu.cn
  • Received Date: 2023-05-05
    Accepted Date: 2024-07-03
    Available Online: 2024-10-22

  • The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship. This numerical model is based on the time-domain potential flow theory and higher-order boundary element method, where an analytical expression is completely expanded to determine the base-unsteady coupling flow imposed on the moving condition of the ship. The ship in the numerical model may possess different advancing speeds, i.e. stationary, low speed, and high speed. The role of the water depth, wave height, wave period, and incident wave angle is analyzed by means of the accurate numerical model. It is found that the resonant motions of the high forward-speed ship are triggered by comparison with the stationary one. More specifically, a higher forward speed generates a V-shaped wave region with a larger elevation, which induces stronger resonant motions corresponding to larger wave periods. The shoaling effect is adverse to the motion of the low-speed ship, but is beneficial to the resonant motion of the high-speed ship. When waves obliquely propagate toward the ship, the V-shaped wave region would be broken due to the coupling effect between roll and pitch motions. It is also demonstrated that the maximum heave motion occurs in beam seas for stationary cases but occurs in head waves for high speeds. However, the variation of the pitch motion with period is hardly affected by wave incident angles.
  • 加载中
    1. [1]

      Ashkezari, A.Z. and Moradi, M., 2021. Three-dimensional simulation and evaluation of the hydrodynamic effects of stern wedges on the performance and stability of high-speed planing monohull craft, Applied Ocean Research, 110, 102585. doi: 10.1016/j.apor.2021.102585

    2. [2]

      Bingham, H.B., 2016. A note on the relative efficiency of methods for computing the transient free-surface Green function, Ocean Engieering, 120, 15–20. doi: 10.1016/j.oceaneng.2016.05.020

    3. [3]

      Cheng, Y., Fu, L., Dai, S.S., Collu, M., Cui, L., Yuan, Z.M. and Incecik, A., 2022a. Experimental and numerical analysis of a hybrid WEC-breakwater system combining an oscillating water column and an oscillating buoy, Renewable and Sustainable Energy Reviews, 169, 112909. doi: 10.1016/j.rser.2022.112909

    4. [4]

      Cheng, Y., Fu, L., Dai, S.S., Collu, M., Ji, C.Y., Yuan, Z.M. and Incecik, A., 2022b. Experimental and numerical investigation of WEC-type floating breakwaters: a single-pontoon oscillating buoy and a dual-pontoon oscillating water column, Coastal Engineering, 177, 104188. doi: 10.1016/j.coastaleng.2022.104188

    5. [5]

      Cheng, Y., Gong, J.L. and Zhang, J., 2024. Hydrodynamic investigation on a single-point moored offshore cage-wave energy converter hybrid system, Ocean Engineering, 299, 116848. doi: 10.1016/j.oceaneng.2024.116848

    6. [6]

      Cheng, Y., Xi, C., Dai, S.S., Ji, C.Y., Cocard, M., Yuan, Z.M. and Incecik, A., 2021. Performance characteristics and parametric analysis of a novel multi-purpose platform combining a moonpool-type floating breakwater and an array of wave energy converters, Applied Energy, 292, 116888. doi: 10.1016/j.apenergy.2021.116888

    7. [7]

      Das, S. and Cheung, K.F., 2012. Scattered waves and motions of marine vessels advancing in a seaway, Wave Motion, 49(1), 181–197. doi: 10.1016/j.wavemoti.2011.09.003

    8. [8]

      Duan, W.Y., Wang, H.X., Chen, J.K. and Wang, H.J., 2022. TEBEM for springing responses of a container ship with forward speed and nonlinear effects in time domain, Engineering Analysis with Boundary Elements, 140, 406–420. doi: 10.1016/j.enganabound.2022.04.026

    9. [9]

      Eslamdoost, A., Larsson, L. and Bensow, R., 2015. On transom clearance, Ocean Engineering, 99, 55–62. doi: 10.1016/j.oceaneng.2015.02.008

    10. [10]

      He, G.H., Chen, L.M., Zhang, J.S. and Zhang, S.J., 2017. Iterative Rankine HOBEM analysis of hull-form effects in forward-speed diffraction problem, Journal of Hydrodynamics, 29(2), 226–234. doi: 10.1016/S1001-6058(16)60732-1

    11. [11]

      Heo, K. and Kashiwagi, M., 2019. A numerical study of second-order springing of an elastic body using higher-order boundary element method (HOBEM), Applied Ocean Research, 93, 101903. doi: 10.1016/j.apor.2019.101903

    12. [12]

      Hong, L., Zhu, R.C., Miao, G.P. and Fan, J., 2016. Study on Havelock form translating-pulsating source Green's function distributing on horizontal line segments and its applications, Ocean Engineering, 124, 306–323. doi: 10.1016/j.oceaneng.2016.07.056

    13. [13]

      Huang, S., Zhu, R.C., Chang, H.Y., Wang, H. and Yu, Y., 2022. Machine Learning to approximate free-surface Green’s function and its application in wave-body interactions, Engineering Analysis with Boundary Elements, 134, 35–48. doi: 10.1016/j.enganabound.2021.09.032

    14. [14]

      Journée, J.M.J., 1992. Experiments and Calculations on 4 Wigley Hull Forms in Head Waves, Ship Hydromechanics Laboratory, Delft University of Technology, The Netherlands.

    15. [15]

      Kim, D., Yim, J., Song, S., Demirel, Y.K. and Tezdogan, T., 2022. A systematic investigation on the manoeuvring performance of a ship performing low-speed manoeuvres in adverse weather conditions using CFD, Ocean Engineering, 263, 112364. doi: 10.1016/j.oceaneng.2022.112364

    16. [16]

      Kim, K.H. and Kim, Y., 2011. Numerical study on added resistance of ships by using a time-domain Rankine panel method, Ocean Engineering, 38(13), 1357–1367. doi: 10.1016/j.oceaneng.2011.04.008

    17. [17]

      Li, Z.F., 2016. Numerical Simulation of Motion and Wave Load Responses of Moderate or High Speed Ships Based on 3D Time Domain Methods, Ph.D. Thesis, Harbin Engineering University, Harbin. (in Chinese)

    18. [18]

      Marlantes, K.E. and Taravella, B.M., 2019. A fully-coupled quadratic strip theory/finite element method for predicting global ship structure response in head seas, Ocean Engineering, 187, 106189. doi: 10.1016/j.oceaneng.2019.106189

    19. [19]

      Oh, S., Jung, D., Cho, S.K., Nam, B.W. and Sung, H.G., 2019. Frequency domain analysis for hydrodynamic responses of floating structure using desingularized indirect boundary integral equation method, Journal of the Society of Naval Architects of Korea, 56(1), 11–22. doi: 10.3744/SNAK.2019.56.1.011

    20. [20]

      Oh, S. and Kim, B., 2021. Hybrid radiation technique of frequency-domain Rankine source method for prediction of ship motion at forward speed, International Journal of Naval Architecture and Ocean Engineering, 13, 260–277. doi: 10.1016/j.ijnaoe.2021.03.002

    21. [21]

      Rajendran, S. and Guedes Soares, C., 2016. Numerical investigation of the vertical response of a containership in large amplitude waves, Ocean Engineering, 123, 440–451. doi: 10.1016/j.oceaneng.2016.06.039

    22. [22]

      Riesner, M. and El Moctar, O., 2021. Assessment of wave induced higher order resonant vibrations of ships at forward speed, Journal of Fluids and Structures, 103, 103262. doi: 10.1016/j.jfluidstructs.2021.103262

    23. [23]

      Sreedevi, R. and Nallayarasu, S., 2022. Parametric study on passing ship effects on moored ship using CFD simulation validated with experiments, Ocean Engineering, 263, 112349. doi: 10.1016/j.oceaneng.2022.112349

    24. [24]

      Sun, S.L., Wang, J.L., Li, H., Chen, R.Q. and Zhang. C.J., 2021, Investigation on responses and wave climbing of a ship in large waves using a fully nonlinear boundary element method, Engineering Analysis with Boundary Elements, 125, 250–263.

    25. [25]

      Teng, B. and Eatock Taylor, R., 1995. New higher-order boundary element methods for wave diffraction/radiation, Applied Ocean Research, 17(2), 71–77. doi: 10.1016/0141-1187(95)00007-N

    26. [26]

      Wang, H., Zhu, R.C., Gu, M.X. and Gu, X.F., 2022. Numerical investigation on steady wave of high-speed ship with transom stern by potential flow and CFD methods, Ocean Engineering, 247, 110714. doi: 10.1016/j.oceaneng.2022.110714

    27. [27]

      Yang, P., Li, J.R., Gu, X.K. and Wu, D.W., 2019. Application of the 3D time-domain Green’s function for finite water depth in hydroelastic mechanics, Ocean Engineering, 189, 106386. doi: 10.1016/j.oceaneng.2019.106386

    28. [28]

      Yang, P., Zhang, W., Wang, X.L., Jiang, J., Hu, J.J., Wen, W. and Geng, Y.C., 2021. Uncertainty analysis of hydroelastic responses and wave loads for different structural modeling and potential methods, Ocean Engineering, 222, 108529. doi: 10.1016/j.oceaneng.2020.108529

    29. [29]

      Yasuda, E., Iwashita, H. and Kashiwagi, M., 2016. Improvement of Rankine panel method for seakeeping prediction of a ship in low frequency region, Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, ASME, Busan, South Korea.

    30. [30]

      Yuan, Z.M., 2014. Hydrodynamic Interaction Between Ships Travelling or Stationary Shallow Waters or Stationary in Shallow Waters, Ph.D. Thesis, University of Strathclyde, UK.

    31. [31]

      Yuan, Z.M., Incecik, A. and Jia, L.B., 2014. A new radiation condition for ships travelling with very low forward speed, Ocean Engineering, 88, 298–309. doi: 10.1016/j.oceaneng.2014.05.019

    32. [32]

      Zhang, T., Zhou, B., Liu, H., Wu, Z.F., Han, X.S. and Gho, W.M., 2021. A study on hydrodynamic analysis of ship with forward-speed based on a time domain boundary element method, Engineering Analysis with Boundary Elements, 128, 216–226. doi: 10.1016/j.enganabound.2021.04.007

    33. [33]

      Zhou, B.Z., Ning, D.Z., Teng, B. and Bai, W., 2013. Numerical investigation of wave radiation by a vertical cylinder using a fully nonlinear HOBEM, Ocean Engineering, 70, 1–13. doi: 10.1016/j.oceaneng.2013.04.019

    34. [34]

      Zhou, W.J., Zhu, R.C., Chen, X. and Hong, L., 2020. Vertical integral method incoporated with multi-domain HOBEM for time domain calculation of hydrodynamics of forward speed SHIP, Applied Ocean Research, 94, 101997. doi: 10.1016/j.apor.2019.101997

    35. [35]

      Zhou, Y., Ning, D.Z., Chen, L.F. and Iglesias, G., 2021. Nonlinear hydrodynamic modeling of an offshore stationary multi-oscillating water column platform, Ocean Engineering, 227, 108919. doi: 10.1016/j.oceaneng.2021.108919

  • 加载中
    1. [1]

      Li-fen HUKe-zheng ZHANGXiao-ying LIRun-xin CHANG . Capsizing Probability of Dead Ship Stability in Beam Wind and Wave for Damaged Ship. China Ocean Engineering, 2019, 33(2): 245-251. doi: 10.1007/s13344-019-0024-6

    2. [2]

      Yong CHENGChun-yan JIZhi-ming YUANINCECIK Atilla . Wave Slamming on An OWSC Wave Energy Converter in Coupled Wave−Current Conditions with Variable-Depth Seabed. China Ocean Engineering, 2021, 35(5): 646-661. doi: 10.1007/s13344-021-0057-5

    3. [3]

      Dong-chuang YUANYong CHENGChun-yan JI . Application of A Fully Nonlinear Higher-Order Element Method for Modelling Three-Dimensional Wave Entry of A Cone. China Ocean Engineering, 2021, 35(6): 814-827. doi: 10.1007/s13344-021-0072-6

    4. [4]

      . Second-Order Wave Diffraction Around 3-D Bodies by A Time-Domain Method. China Ocean Engineering, 2001, (1): -.

    5. [5]

      王大国邹志利谭国焕刘 霞 . A Time-Domain Coupled Model for Nonlinear Wave Forces on A Fixed Box-Shaped Ship in A Harbor. China Ocean Engineering, 2010, (1): 41-56.

    6. [6]

      Su-yong PANYong CHENG . A Time-Domain Numerical Simulation for Free Motion Responses of Two Ships Advancing in Head Waves. China Ocean Engineering, 2024, 38(3): 519-530. doi: 10.1007/s13344-024-0041-y

    7. [7]

      王大国邹志利THAM Leslie George . A 3-D Time-Domain Coupled Model for Nonlinear Waves Acting on A Box-Shaped Ship Fixed in A Harbor. China Ocean Engineering, 2011, (3): 441-456.

    8. [8]

      Li-qin LIUYa-liu LIUWan-hai XUYan LIYou-gang TANG . A Semi-Analytical Method for the PDFs of A Ship Rolling in Random Oblique Waves. China Ocean Engineering, 2018, 32(1): 74-84. doi: 10.1007/s13344-018-0008-y

    9. [9]

      . Transient Hydroelastic Response of VLFS by FEM with Impedance Boundary Conditions in Time Domain. China Ocean Engineering, 2005, (1): -.

    10. [10]

      . A Time Domain Computation Method for Dynamic Behavior of Mooring System. China Ocean Engineering, 1998, (1): -.

    11. [11]

      李金宣柳淑学 . Focused Wave Properties Based on A High Order Spectral Method with A Non-Periodic Boundary. China Ocean Engineering, 2015, (1): 1-16.

    12. [12]

      周利兰高 高R. H. M. Huijsmans . Wash Waves Generated by High Speed Displacement Ships. China Ocean Engineering, 2015, (5): 757-770.

    13. [13]

      Ming SONGWei YUANKun LIUYue HAN . Analysis of Ship Motion in An Ice Ridge Field Based on Empirical Approach. China Ocean Engineering, 2023, 37(6): 912-922. doi: 10.1007/s13344-023-0076-5

    14. [14]

      Sheng XIANGBin CHENGFeng-yu ZHANGMiao TANG . An Improved Time Domain Approach for Analysis of Floating Bridges Based on Dynamic Finite Element Method and State-Space Model. China Ocean Engineering, 2022, 36(5): 682-696. doi: 10.1007/s13344-022-0061-4

    15. [15]

      . Numerical Simulation of Breaking Wave Based on Higher-Order Mild Slope Equation*. China Ocean Engineering, 2001, (2): -.

    16. [16]

      Lian-yang TANGYong CHENGChun-yan JI . Time-Domain Nonlinear Wave-Current Interaction with A Steep Wave Riser Considering Internal Flow Effect. China Ocean Engineering, 2021, 35(3): 410-421. doi: 10.1007/s13344-021-0037-9

    17. [17]

      黄 硕段文洋马庆位 . An Approximation to Energy Dissipation in Time Domain Simulation of Sloshing Waves Based on Linear Potential Theory. China Ocean Engineering, 2011, (2): 189-200.

    18. [18]

      Shi-yan SUNShi-li SUNGuo-xiong WU . Fully Nonlinear Time Domain Analysis for Hydrodynamic Performance of An Oscillating Wave Surge Converter. China Ocean Engineering, 2018, 32(5): 582-592. doi: 10.1007/s13344-018-0060-7

    19. [19]

      . Analysis of Directional Spectra and Reflection Coefficients in Incident and Reflected Wave Field. China Ocean Engineering, 2001, (3): -.

    20. [20]

      . Ship Hull Slamming Analysis with Nonlinear Boundary Element Method. China Ocean Engineering, 1997, (4): -.

Metrics
  • PDF Downloads(1)
  • Abstract views(2506)
  • HTML views(2062)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

水利部交通运输部国家能源局南京水利科学研究院 《中国海洋工程》编辑部 版权所有

Address: 34 Hujuguan, Nanjing 210024, China Pos: 210024 Tel: 025-85829388 E-mail: coe@nhri.cn

Support by Beijing Renhe Information Technology Co. Ltd E-mail: info@rhhz.net

苏ICP备05007122号-5

/

DownLoad:  Full-Size Img  PowerPoint
Return