ISSN  0890-5487 CN 32-1441/P

Citation: Jie HE, Guo-yong CHANG, Yang LIU and Zhao-chao LI. A Nonlinear Explicit Model of A Non-Circular Subsea Tunnel-Liner System with An FGM Inverted Arch Under Mechanical Loading and Fire Fields[J]. China Ocean Engineering, 2024, 38(5): 855-865. doi: 10.1007/s13344-024-0069-z shu

A Nonlinear Explicit Model of A Non-Circular Subsea Tunnel-Liner System with An FGM Inverted Arch Under Mechanical Loading and Fire Fields

  • Corresponding author: Zhao-chao LI, lizhaochao@hut.edu.cn
  • Received Date: 2023-12-05
    Accepted Date: 2024-05-10
    Available Online: 2024-10-22

Figures(11) / Tables(1)

  • This paper proposes an explicit scheme to analyze the failure of a subsea polyhedral tunnel-liner system with an inverted arch under mechanical loading and fire fields. The thin-walled liner is made of Functionally Graded Materials (FGMs), which may improve the stability behavior of the tunnel-liner system. Hydrostatic pressure is inevitable in the liner since underground water may penetrate the cracks of the tunnel, and reach the outer surface of the liner. In addition, an elevated temperature loading is taken into account, considering that fire may occur in the tunnel-liner system. Under the combination of mechanical loading and thermal loading, the liner deforms into a single-lobe shape, which is depicted by a trigonometric function. The total potential energy is expressed quantitatively after the energy approach and thin-walled shell theory are used. The minimum potential energy is obtained when the critical buckling occurs. The critical buckling pressure is calculated, which considers the effect of the thermal field. The present analytical prediction is subsequently compared precisely with other closed-form solutions. Finally, the effects of several parameters, such as the geometric shapes, temperature variations, and volume fraction indices, are discussed to further survey the buckling performance of the nonlinear buckling of an FGM polyhedral liner with an inverted arch. One may address a polyhedral liner with fewer polyhedral sides, and a lower volume fraction index is recommended to rehabilitate cracked tunnels in engineering applications.
  • 加载中
    1. [1]

      Asgari, H., Bateni, M., Kiani, Y. and Eslami, M.R., 2014. Non-linear thermo-elastic and buckling analysis of FGM shallow arches, Composite Structures, 109, 75–85. doi: 10.1016/j.compstruct.2013.10.045

    2. [2]

      Boot, J.C., Naqvi, M.M. and Gumbel, J.E., 2014. A new method for the structural design of flexible liners for gravity pipes of egg-shaped cross section: theoretical considerations and formulation of the problem, Thin-Walled Structures, 85, 411–418. doi: 10.1016/j.tws.2014.09.001

    3. [3]

      Chang, G.Y., Huang, H. and Li, Z.C., 2024. Systematic failure mechanism of an FGMs polyhedral arched liner under a fire disaster environment, Engineering Structures, 305, 117655. doi: 10.1016/j.engstruct.2024.117655

    4. [4]

      Chang, G.Y. and Li, Z.C., 2024. Systematic schemes for buckling analyses of a subsea bio-inspired non-circular FGM polyhedral liner with an arch invert, Ocean Engineering, 300, 117484. doi: 10.1016/j.oceaneng.2024.117484

    5. [5]

      El-Sawy, K. and Moore, I.D., 1998. Stability of loosely fitted liners used to rehabilitate rigid pipes, Journal of Structural Engineering, 124(11), 1350–1357. doi: 10.1061/(ASCE)0733-9445(1998)124:11(1350)

    6. [6]

      El-Sawy, K.M., 2013. Inelastic stability of liners of cylindrical conduits with local imperfection under external pressure, Tunnelling and Underground Space Technology, 33, 98–110. doi: 10.1016/j.tust.2012.09.004

    7. [7]

      El-Sawy, K.M. and Sweedan, A.M.I., 2010. Effect of local wavy imperfections on the elastic stability of cylindrical liners subjected to external uniform pressure, Tunnelling and Underground Space Technology, 25(6), 702–713. doi: 10.1016/j.tust.2010.04.002

    8. [8]

      Glock, D., 1977. Überkritisches Verhalten eines Starr Ummantelten Kreisrohres bei Wasserdrunck von Aussen und Temperaturdehnung. (Post-critical behavior of a rigidly encased circular pipe subject to external water pressure and thermal extension), Der Stahlbau, 7, 212–217.

    9. [9]

      He, B.G., Xue, R.H., Zhang, Z.Q., Feng, X.T. and Wu, C., 2023. A novel method of imposing external water pressure to explore the failure behavior of railway tunnel linings, Tunnelling and Underground Space Technology, 133, 104942. doi: 10.1016/j.tust.2022.104942

    10. [10]

      Hua, N., Tessari, A. and Elhami Khorasani, N., 2021. Characterizing damage to a concrete liner during a tunnel fire, Tunnelling and Underground Space Technology, 109, 103761. doi: 10.1016/j.tust.2020.103761

    11. [11]

      Javani, M., Kiani, Y. and Eslami, M.R., 2019. Geometrically nonlinear rapid surface heating of temperature-dependent FGM arches, Aerospace Science and Technology, 90, 264–274. doi: 10.1016/j.ast.2019.04.049

    12. [12]

      Kiani, Y. and Eslami, M.R., 2013. Thermomechanical buckling of temperature-dependent FGM beams, Latin American Journal of Solids and Structures, 10(2), 223–246. doi: 10.1590/S1679-78252013000200001

    13. [13]

      Li, Z.C., Guo, Z. and Meng, L.J., 2021. Elastic and inelastic stability of a steel arch subjected to a crown point load under an elevated fire environment, Engineering Failure Analysis, 123, 105298. doi: 10.1016/j.engfailanal.2021.105298

    14. [14]

      Li, Z.C., Liu, S.R., Zhang, Q. and Zhang, Z., 2024. Analytical buckling scheme of a functionally graded porous liner reinforced by nanocomposites encased in an egg-shaped pipe, Engineering Structures, 310, 118095. doi: 10.1016/j.engstruct.2024.118095

    15. [15]

      Li, Z.C., Tang, Y., Tang, F.J., Chen, Y.Z. and Chen, G.D., 2018. Elastic buckling of thin-walled polyhedral pipe liners encased in a circular pipe under uniform external pressure, Thin-Walled Structures, 123, 214–221. doi: 10.1016/j.tws.2017.11.019

    16. [16]

      Li, Z.C., Wang, L.Z., Guo, Z. and Shu, H., 2012. Elastic buckling of cylindrical pipe linings with variable thickness encased in rigid host pipes, Thin-Walled Structures, 51, 10–19. doi: 10.1016/j.tws.2011.11.003

    17. [17]

      Li, Z.C., Zhang, Q., Shen, H., Xiao, X.H., Kuai, H.D. and Zheng, J.X., 2023. Buckling performance of the encased functionally graded porous composite liner with polyhedral shapes reinforced by graphene platelets under external pressure, Thin-Walled Struct, 183, 110370. doi: 10.1016/j.tws.2022.110370

    18. [18]

      Li, Z.C., Zheng, J.X. and Chen, Y.Z., 2019a. Nonlinear buckling of thin-walled FGM arch encased in rigid confinement subjected to external pressure, Engineering Structures, 186, 86–95. doi: 10.1016/j.engstruct.2019.02.019

    19. [19]

      Li, Z.C., Zheng, J.X., Sun, Q. and He, H.T., 2019b. Nonlinear structural stability performance of pressurized thin-walled FGM arches under temperature variation field, International Journal of Non-Linear Mechanics, 113, 86–102. doi: 10.1016/j.ijnonlinmec.2019.03.016

    20. [20]

      Li, Z.C., Zheng, J.X., Zhang, Z. and He, H.T., 2019c. Nonlinear stability and buckling analysis of composite functionally graded arches subjected to external pressure and temperature loading, Engineering Structures, 199, 109606. doi: 10.1016/j.engstruct.2019.109606

    21. [21]

      Omara, A.A.M., Guice, L.K., Straughan, W.T. and Akl, F., 2000. Instability of thin pipes encased in oval rigid cavity, Journal of Engineering Mechanics, 126(4), 381–388. doi: 10.1061/(ASCE)0733-9399(2000)126:4(381)

    22. [22]

      Ou, Z.H., Xiao, X.H., Liu, Y., Bu, G.B. and Li, Z.C., 2022. Thermal and mechanical behaviors of the composite polyhedral arches, Composite Structures, 281, 115067. doi: 10.1016/j.compstruct.2021.115067

    23. [23]

      Sanders, Jr., J.L., 1963. Nonlinear theories for thin shells, Quarterly of Applied Mathematics, 21(1), 21–36. doi: 10.1090/qam/147023

    24. [24]

      Tang, Y., Tang, F.J., Zheng, J.X. and Li, Z.C., 2021. In-plane asymmetric buckling of an FGM circular arch subjected to thermal and pressure fields, Engineering Structures, 239, 112268. doi: 10.1016/j.engstruct.2021.112268

    25. [25]

      Thépot, O., 2001. Structural design of oval-shaped sewer linings, Thin-Walled Structures, 39(6), 499–518. doi: 10.1016/S0263-8231(01)00013-1

    26. [26]

      Thépot, O., 2000. Flambement d'une coque non circulaire plaquée contre une paroi, Revue Française de Génie Civil, 4(1), 81–107.

    27. [27]

      Thibeault, N., 2008. Graphical application of buckling equations for a cylindrical steel tunnel liner with and without stiffeners, Practice Periodical on Structural Design and Construction, 13(2), 78–84. doi: 10.1061/(ASCE)1084-0680(2008)13:2(78)

    28. [28]

      Vasilikis, D. and Karamanos, S.A., 2009. Stability of confined thin-walled steel cylinders under external pressure, International Journal of Mechanical Sciences, 51(1), 21–32. doi: 10.1016/j.ijmecsci.2008.11.006

    29. [29]

      Wang, J.H., Koizumi, A. and Yuan, D.J., 2016. Theoretical and numerical analyses of hydrostatic buckling of a noncircular composite liner with arched invert, Thin-Walled Structures, 102, 148–157. doi: 10.1016/j.tws.2016.01.021

    30. [30]

      Wang, J.H., Zhang, W.J., Guo, X., Koizumi, A. and Tanaka, H., 2015. Mechanism for buckling of shield tunnel linings under hydrostatic pressure, Tunnelling and Underground Space Technology, 49, 144–155. doi: 10.1016/j.tust.2015.04.012

    31. [31]

      Xiao, X.H., Bu, G.B., Ou, Z.H. and Li, Z.C., 2022. Nonlinear in-plane instability of the confined FGP arches with nanocomposites reinforcement under radially-directed uniform pressure, Engineering Structures, 252, 113670. doi: 10.1016/j.engstruct.2021.113670

    32. [32]

      Xiao, X.H., Zhang, Q., Chang, G.Y., Liu, Y. and Li, Z.C., 2024. Structural optimization model of confined polyhedral composite subsea pipelines under pressure and thermal fields, Marine Structures, 94, 103548. doi: 10.1016/j.marstruc.2023.103548

    33. [33]

      Xiao, X.H., Zhang, Q., Zheng, J.X. and Li, Z.C., 2023. Analytical model for the nonlinear buckling responses of the confined polyhedral FGP-GPLs lining subjected to crown point loading, Engineering Structures, 282, 115780. doi: 10.1016/j.engstruct.2023.115780

    34. [34]

      Zhang, Q., Li, Z.C., Huang, H., Zhang, H.P., Zheng, H. and Kuai, H.D., 2023a. Stability of submarine bi-material pipeline-liner system with novel polyhedral composites subjected to thermal and mechanical loading fields, Marine Structures, 90, 103424. doi: 10.1016/j.marstruc.2023.103424

    35. [35]

      Zhang, Q., Li, Z.C. and Xiao, X.H., 2023b. Structural optimization of an encased bi-material FGP-GNF pipeline-liner system with novel polyhedral configurations, Mechanics of Advanced Materials and Structures, doi: 10.1080/15376494.2023.2244489.

  • 加载中
    1. [1]

      Yi ZHANGYue CHENLai YUNXu LIANG . Mechanical Performance of Bio-inspired Bidirectional Corrugated Sandwich Pressure Shell Under External Hydrostatic Pressure. China Ocean Engineering, 2024, 38(2): 297-312. doi: 10.1007/s13344-024-0025-y

    2. [2]

      Xiao-de DINGJian ZHANGFang WANGHui-feng JIAOMing-lu WANG . Buckling Properties of Water-Drop-Shaped Pressure Hulls with Various Shape Indices Under Hydrostatic External Pressure. China Ocean Engineering, 2024, 38(1): 1-17. doi: 10.1007/s13344-024-0001-6

    3. [3]

      Yong-mei ZHULong-hui WANGHao LYUAo SUNJian ZHANGXi-lu ZHAO . Buckling Characteristics of Multi-Crack Egg-Shaped Shells Under Axial Pressure. China Ocean Engineering, 2025, 39(2): 280-289. doi: 10.1007/s13344-025-0020-y

    4. [4]

      Chen HUANGJian ZHANGFang WANGChen-yang DI . Restoration of Ultimate Strength of Dented Hemispheres Under External Hydrostatic Pressure. China Ocean Engineering, 2022, 36(3): 500-507. doi: 10.1007/s13344-022-0043-6

    5. [5]

      Wen-bin WEILin YUANJia-sheng ZHOUZheng LIU . Experimental, Numerical, and Analytical Studies on the Bending of Mechanically Lined Pipe. China Ocean Engineering, 2024, 38(2): 221-232. doi: 10.1007/s13344-024-0019-9

    6. [6]

      高喜峰刘 润闫澍旺 . Model Test Based Soil Spring Model and Application in Pipeline Thermal Buckling Analysis. China Ocean Engineering, 2011, (3): 507-518.

    7. [7]

      . Impact Buckling and Post-Buckling of Elasto-Viscoplastic Cylindrical Shell Under Torsion. China Ocean Engineering, 1997, (1): -.

    8. [8]

      Wen-xian TANGWei-min WANGJian ZHANGShu-yan WANG . Buckling of Cassini Oval Pressure Hulls Subjected to External Pressure. China Ocean Engineering, 2019, 33(4): 503-508. doi: 10.1007/s13344-019-0048-y

    9. [9]

      . Dynamic Buckling of Laminated Composite Bars Subjected to Axial Impact. China Ocean Engineering, 1998, (2): -.

    10. [10]

      Run LIUXin-tong HAOCheng-feng LIZheng YUQing-xin LI . Numerical Study on Lateral Buckling Mode of Pipelines Laid on A Sleeper. China Ocean Engineering, 2023, 37(3): 495-505. doi: 10.1007/s13344-023-0041-3

    11. [11]

      康海贵张晶孙英伟郭伟 . Derivation of Reliability Index Vector Formula for Series System and Its Application. China Ocean Engineering, 2013, (2): 159-168.

    12. [12]

      袁林龚顺风金伟良李志刚赵冬岩 . Analysis on Buckling Performance of Submarine Pipelines During Deepwater Pipe-Laying Operation. China Ocean Engineering, 2009, (2): 303-316.

    13. [13]

      Xin-dong DINGShu-qing WANGWen-cheng LIUXiao-han YE . A Comparative Study on the Post-Buckling Behavior of Reinforced Thermoplastic Pipes (RTPs) Under External Pressure Considering Progressive Failure. China Ocean Engineering, 2024, 38(2): 233-246. doi: 10.1007/s13344-024-0020-3

    14. [14]

      . Fatigue Crack Propagation in Steel A131 Under Ice Loading of Crushing, Bending and Buckling. China Ocean Engineering, 2001, (3): -.

    15. [15]

      Si-yuan CHENYu DENGXu LIANGXue-jiao DENGZhen-kui WANG . Research on Birdcage Buckling in the Armor Wire of A Damaged Umbilical Cable Under Compression and Bending Cyclic Load. China Ocean Engineering, 2025, 39(1): 86-99. doi: 10.1007/s13344-025-0006-9

    16. [16]

      Run LIUXiu-yan WANG . Lateral Global Buckling of Submarine Pipelines Based on the Model of Nonlinear Pipe–Soil Interaction. China Ocean Engineering, 2018, 32(3): 312-322. doi: 10.1007/s13344-018-0032-y

    17. [17]

      李鹏飞周晓军 . Mechanical Behavior and Shape Optimization of Lining Structure for Subsea Tunnel Excavated in Weathered Slot. China Ocean Engineering, 2015, (6): 875-890.

    18. [18]

      . Safety Level and Reliability Index for Bank Slope Stability. China Ocean Engineering, 1997, (2): -.

    19. [19]

      . Numerical Experiment on Two-Dimensional Line Thermal. China Ocean Engineering, 2002, (4): -.

    20. [20]

      . A Three-Dimensional Prediction Method for Thermal Diffusion. China Ocean Engineering, 1998, (3): -.

Metrics
  • PDF Downloads(14)
  • Abstract views(4117)
  • HTML views(3208)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

水利部交通运输部国家能源局南京水利科学研究院 《中国海洋工程》编辑部 版权所有

Address: 34 Hujuguan, Nanjing 210024, China Pos: 210024 Tel: 025-85829388 E-mail: coe@nhri.cn

Support by Beijing Renhe Information Technology Co. Ltd E-mail: info@rhhz.net

苏ICP备05007122号-5

/

DownLoad:  Full-Size Img  PowerPoint
Return