A Rapid Crack Detection Technique Based on Attention for Intelligent M&O of Cross-Sea Bridge
- Corresponding author: Wei WEI, 510320796@qq.com
Citation:
Yong-chuan ZHOU, Guang-jun LI, Wei WEI, Ya-meng WANG and Qiang JING. A Rapid Crack Detection Technique Based on Attention for Intelligent M&O of Cross-Sea Bridge[J]. China Ocean Engineering, 2024, 38(5): 866-876.
doi:
10.1007/s13344-024-0068-0
Badrinarayanan, V., Kendall, A. and Cipolla, R., 2017. SegNet: A deep convolutional encoder-decoder architecture for image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495. doi: 10.1109/TPAMI.2016.2644615
Ding, W., Yang, H., Yu, K. and Shu, J.P., 2023. Crack detection and quantification for concrete structures using UAV and transformer, Automation in Construction, 152, 104929. doi: 10.1016/j.autcon.2023.104929
Dung, C.V. and Anh, L.D., 2019. Autonomous concrete crack detection using deep fully convolutional neural network, Automation in Construction, 99, 52–58. doi: 10.1016/j.autcon.2018.11.028
Fu, H.X., Meng, D., Li, W.H., and Wang, Y.C., 2021. Bridge crack semantic segmentation based on improved Deeplabv3+, Journal of Marine Science and Engineering, 9(6), 671. doi: 10.3390/jmse9060671
He, S.H., Zhao, X.M., Ma, J., Zhao, Y., Song, H.S., Song, H.X., Cheng, L., Yuan, Z.Y., Huang, F.W., Zhang, J., Tian, B., Wang, L.Y. and Qi, X.Z., 2017. Review of highway bridge inspection and condition assessment, China Journal of Highway and Transport, 30(11), 63−80. (in Chinese)
Howard, A., Sandler, M., Chen, B., Wang, W.J., Chen, L.C., Tan, M.X., Chu, G., Vasudevan, V., Zhu, Y.K., Pang, R.M., Adam, H. and Le, Q., 2019. Searching for MobileNetV3, Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE, Seoul, Korea (South).
Hsieh, Y.A. and Tsai, Y.J., 2020. Machine learning for crack detection: review and model performance comparison, Journal of Computing in Civil Engineering, 34(5), 04020038. doi: 10.1061/(ASCE)CP.1943-5487.0000918
Jang, K., Jung, H. and An, Y.K., 2022. Automated bridge crack evaluation through deep super resolution network-based hybrid image matching, Automation in Construction, 137, 104229. doi: 10.1016/j.autcon.2022.104229
Korthikanti, V.A., Casper, J., Lym, S., McAfee, L., Andersch, M., Shoeybi, M. and Catanzaro, B., 2023. Reducing activation recomputation in large transformer models, Proceedings of Machine Learning and Systems 5 Pre-Proceedings (MLSys 2023).
Li, G., Liu, T., Fang, Z.Y., Shen, Q. and Ali, J., 2022a. Automatic bridge crack detection using boundary refinement based on real-time segmentation network, Structural Control & Health Monitoring, 29(9), e2991.
Li, L.F., Wu, D. and Wang, N., 2021. Method for bridge crack detection based on multiresolution network, Laser & Optoelectronics Progress, 58(12), 1210004. (in Chinese)
Li, Y., Li, Y.J., Liu J.C., Fan, Z. and Wang, Q.L., 2022b. Research on segmentation of steel surface defect images based on improved Res-UNet network, Journal of Electronics & Information Technology, 44(5), 1513−1520. (in Chinese)
Liu, Z.Q., Cao, Y.W., Wang, Y.Z. and Wang, W., 2019. Computer vision-based concrete crack detection using U-net fully convolutional networks, Automation in Construction, 104, 129–139, doi: 10.1016/j.autcon.2019.04.005
Long, L., Shelhamer, E., and Darrell, T., 2015. Fully convolutional networks for semantic segmentation, Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Boston, MA, USA, pp. 3431–3440.
Mehta, S., Rastegari, M., Shapiro, L. and Hajishirzi, H., 2019. Espnetv2: a light-weight, power efficient, and general purpose convolutional neural network, Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Long Beach, CA, USA, pp. 9190–9200.
Milletari, F., Navab, N. and Ahmadi, S.A., 2016. V-Net: Fully convolutional neural networks for volumetric medical image segmentation, Proceedings of 2016 Fourth International Conference on 3D Vision (3DV), IEEE, Stanford, CA, USA .
Peng, J.C., Liu, Y., Tang, S.Y., Hao, T.Y., Chu, L.Y., Chen, G.W., Wu, Z.W., Chen, Z.Y., Yu, Z.L., Du, Y.N., Dang, Q.Q., Lai, B.H., Liu, Q.W., Hu, X.G., Yu, D.H. and Ma, Y.J., 2022. PP-LiteSeg: A superior real-time semantic segmentation model, arXiv: 2204.02681v1.
Poudel, R.P.K., Liwicki, S. and Cipolla, R, 2019. Fast-SCNN: Fast semantic segmentation network, arXiv: 1902.04502.
Sandler, M., Howard, A., Zhu, M.L., Zhmoginov, A. and Chen, L.C., 2018. MobileNetV2: Inverted residuals and linear bottlenecks, Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, UT, USA.
Song, Z.G., Liu, Y.L. and Zhang, C.X., 2023. Review on application and development of bridge crack detection based on machine vision, Science Technology and Engineering, 23(30), 12796–12805. (in Chinese)
Sun, X.Z., Xie, Y.C., Jiang, L.M., Cao, Y. and Liu, B.Y., 2022. DMA-Net: DeepLab with multi-scale attention for pavement crack segmentation, IEEE Transactions on Intelligent Transportation Systems, 23(10), 18392–18403. doi: 10.1109/TITS.2022.3158670
Wu, T.Y., Tang, S., Zhang, R., Cao, J. and Zhang, Y.D., 2021. CGNet: A light-weight context guided network for semantic segmentation, IEEE Transactions on Image Processing, 30, 1169–1179. doi: 10.1109/TIP.2020.3042065
Yang, F., Zhang, L., Yu, S.J., Prokhorov, D., Mei, X. and Ling, H.B., 2020. Feature pyramid and hierarchical boosting network for pavement crack detection, IEEE Transactions on Intelligent Transportation Systems, 21(4), 1525–1535. doi: 10.1109/TITS.2019.2910595
Yang, X.C., Li, H., Yu, Y.T., Luo, X.C., Huang, T. and Yang, X, 2018. Automatic pixel-level crack detection and measurement using fully convolutional network, Computer-Aided Civil and Infrastructure Engineering, 33(12), 1090–1109. doi: 10.1111/mice.12412
Yu, C.Q., Gao, C.X., Wang, J.B., Yu, G., Shen, C.H. and Sang, N., 2021. BiSeNet V2: bilateral network with guided aggregation for real-time semantic segmentation, International Journal of Computer Vision, 129(11), 3051–3068. doi: 10.1007/s11263-021-01515-2
Zhao, H.S., Shi, J.P., Qi, X.J., Wang, X.G. and Jia, J.Y., 2017. Pyramid scene parsing network, Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR ), IEEE, Honolulu, HI, USA.
Zhao, H.S., Qi, X.J., Shen, X.Y., Shi, J.P. and Jia, J.Y., 2018. ICNet for real-time semantic segmentation on high-resolution images, Proceedings of the 15th European Conference on Computer Vision–ECCV 2018, Springer, Munich, Germany.
Zou, Q., Cao, Y., Li, Q.Q., Mao, Q.Z. and Wang, S, 2012. CrackTree: Automatic crack detection from pavement images, Pattern Recognition Letters, 33(3), 227–238. doi: 10.1016/j.patrec.2011.11.004
. A Study on Crack Detection with Modal Parameters of A Jacket Platform. China Ocean Engineering, 2004, (1): -.
. A New Probability of Detection Model for Updating Crack Distribution of Offshore Structures. China Ocean Engineering, 2003, (3): -.
李伟 , 陈国明 , 张传荣 , 刘涛 . Simulation Analysis and Experimental Study of Defect Detection Underwater by ACFM Probe. China Ocean Engineering, 2013, (2): 277-282.
. Multilevel Optimal Design of Prestressed Lightweight Concrete-Steel Platform Structures. China Ocean Engineering, 2002, (1): -.
. Estimation of Probability of Damage Detection in Offshore Structural Inspection. China Ocean Engineering, 1996, (3): -.
. Leak Detection in Offshore Pipelines of Conveying Fluid. China Ocean Engineering, 2004, (2): -.
张铁栋 , 万 磊 , 曾文静 , 徐玉如 . Object Detection and Tracking Method of AUV Based on Acoustic Vision. China Ocean Engineering, 2012, (4): 623-636.
. The CMEKF Method for Sub-Sea Pipeline Monitoring and Leak Detection. China Ocean Engineering, 2004, (4): -.
. Experiment Verification of Damage Detection for Offshore Platforms by Neural Networks. China Ocean Engineering, 2006, (3): -.
王文光 , 孙作为 , 李晨鸣 , 王俊 . Study on Dim Target Detection and Discrimination from Sea Clutter. China Ocean Engineering, 2013, (2): 183-192.
. Research on Maneuverability and Simulation of Underwater Vehicles for Pipeline Detection and Maintenance. China Ocean Engineering, 2006, (1): -.
. Damage Detection Methods for Offshore Platforms Based on Wavelet Packet Transform. China Ocean Engineering, 2005, (4): -.
Mojtahedi, A. , Lotfollahi Yaghin, M. A. , Hassanzadeh, Y. , Abbasidoust, F. , Ettefagh, M. M. , Aminfar, M. H. . A Robust Damage Detection Method Developed for Offshore Jacket Platforms Using Modified Artificial Immune System Algorithm. China Ocean Engineering, 2012, (3): 379-395.
Qi-ming WANG , Rui-hu ZHU , Jin-hai ZHENG , Ning WANG , Meng-yan LUO , Yu-fei CHE . A Method for the Damage Detection of Pile Foundation in High-Pile Wharf Based on A Curvature Mode Deletion Model. China Ocean Engineering, 2020, 34(6): 871-880. doi: 10.1007/s13344-020-0079-4
Y. C. Lin , C. C. Chang , M. C. Lee , H. C. Chan , J. M. Leu . Detection of Breaking Waves Using X-Band Pulse Radar in the Nearshore Region. China Ocean Engineering, 2013, (4): 549-556.
Qiming Wang , Ruihu Zhu , Jinhai Zheng , Ning Wang , Mengyan luo , Yufei Che . A method for the damage detection of pile foundation in high-pile wharf based on a curvature mode deletion model. China Ocean Engineering, 2020, (): -.
. Strength of Lightweight Concrete Under Triaxial Compression. China Ocean Engineering, 1996, (2): -.
. Temperature and Stress Analysis of An Experimental Model of Prestressed Lightweight Concrete Platform. China Ocean Engineering, 2000, (3): -.
. A Probabilistic Model for Fatigue Crack Propagation Analysis. China Ocean Engineering, 1999, (4): -.
Ren-hua WANG , Zhi-wen WANG . Compressive Strength of Tubular Members with Combined Pitting Corrosion and Crack Damage. China Ocean Engineering, 2023, 37(4): 613-627. doi: 10.1007/s13344-023-0052-0
水利部交通运输部国家能源局南京水利科学研究院 《中国海洋工程》编辑部 版权所有
Address: 34 Hujuguan, Nanjing 210024, China Pos: 210024 Tel: 025-85829388 E-mail: coe@nhri.cn
Support by Beijing Renhe Information Technology Co. Ltd E-mail: info@rhhz.net