ISSN  0890-5487 CN 32-1441/P

Citation: Kai WANG, Yu-meng LI, Muk Chen ONG, Ling WAN, Liang-bi LI and Zheng-shun CHENG. Extreme Responses of An Integrated System with A Semi-Submersible Wind Turbine and Four Torus-Shaped Wave Energy Converters in Different Survival Modes[J]. China Ocean Engineering, 2024, 38(5): 877-892. doi: 10.1007/s13344-024-0067-1 shu

Extreme Responses of An Integrated System with A Semi-Submersible Wind Turbine and Four Torus-Shaped Wave Energy Converters in Different Survival Modes

  • Corresponding author: Zheng-shun CHENG, zhengshun.cheng@sjtu.edu.cn
  • Received Date: 2023-09-04
    Accepted Date: 2024-03-19
    Available Online: 2024-10-22

  • Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy. To reduce the high cost of energy, a possible try is to utilize the combination of wind and wave energy considering their natural correlation. A combined concept consisting of a semi-submersible wind turbine and four torus-shaped wave energy converters was proposed and numerically studied under normal operating conditions. However, the dynamic behavior of the integrated system under extreme sea conditions has not been studied yet. In the present work, extreme responses of the integrated system under two different survival modes are evaluated. Fully coupled time-domain simulations with consideration of interactions between the semi-submersible wind turbine and the torus-shaped wave energy converters are performed to investigate dynamic responses of the integrated system, including mooring tensions, tower bending moments, end stop forces, and contact forces at the Column-Torus interface. It is found that the addition of four tori will reduce the mean motions of the yaw, pitch and surge. When the tori are locked at the still water line, the whole integrated system is more suitable for the survival modes.
  • 加载中
    1. [1]

      Aubault, A., Alves, M., Sarmento, A., Roddier, D. and Peiffer, A., 2011. Modeling of an oscillating water column on the floating foundation WindFloat, International Conference on Offshore Mechanics and Arctic Engineering, ASME, Rotterdam, 235–246.

    2. [2]

      Bachynski, E.E. and Moan, T., 2013. Point absorber design for a combined wind and wave energy converter on a tension-leg support structure, Proceedings of ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, ASME, Nantes.

    3. [3]

      Cheng, Z.S., Wen, T.R., Ong, M.C. and Wang, K., 2019. Power performance and dynamic responses of a combined floating vertical axis wind turbine and wave energy converter concept, Energy, 171, 190–204. doi: 10.1016/j.energy.2018.12.157

    4. [4]

      DNV, 2017. SESAM User Manual HydroD.

    5. [5]

      Gao, Z., Moan, T., Wan, L. and Michailides, C., 2016. Comparative numerical and experimental study of two combined wind and wave energy concepts, Journal of Ocean Engineering and Science, 1(1), 36–51. doi: 10.1016/j.joes.2015.12.006

    6. [6]

      Hallak, T., Karmakar, D. and Soares, C.G., 2021. Hydrodynamic performance of semi-submersible FOWT combined with point-absorber WECs, Maritime Technology and Engineering 5 Volume 2, CRC Press, pp. 577–585.

    7. [7]

      IEC, 2005. International Standard 61400–1, wind turbines, Part 1 : design requirements, IEC61400-1.

    8. [8]

      Johannessen, K., Meling, T.S. and Haver, S., 2002. Joint distribution for wind and waves in the Northern North Sea, International Journal of Offshore and Polar Engineering, 12(1), ISOPE-02-12-1-001.

    9. [9]

      Jonkman, B.J., 2009. TurbSim User ’s Guide, Version 1.50, National Renewable Energy Lab., Golden.

    10. [10]

      Jonkman, J., Butterfield, S., Musial, W. and Scott, G., 2009. Definition of a 5-MW Reference Wind Turbine for Offshore System Development, National Renewable Energy Lab., Golden.

    11. [11]

      Kim, K.H., Lee, K., Sohn, J.M., Park, S.W., Choi, J.S. and Hong, K., 2015. Conceptual design of 10MW class floating wave-offshore wind hybrid power generation system, Proceedings of the Twenty-fifth International Offshore and Polar Engineering Conference, ISOPE,Kona, ISOPE–I-15-574.

    12. [12]

      Kluger, J.M., 2017. Synergistic Design of A Combined Floating Wind Turbine-Wave Energy Converter. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge.

    13. [13]

      Li, Q.Y., Michailides, C., Gao, Z. and Moan, T., 2018a. A comparative study of different methods for predicting the long-term extreme structural responses of the combined wind and wave energy concept semisubmersible wind energy and flap-type wave energy converter, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 232(1), 85–96. doi: 10.1177/1475090217726886

    14. [14]

      Li, Q.Y., Ren, N. X., Gao, Z. and Moan, T., 2018b. Efficient determination of the long-term extreme responses by the modified environmental contour method for a combined wind turbine and wave energy converter system, Journal of Ocean Engineering and Marine Energy, 4(2), 123–135. doi: 10.1007/s40722-018-0111-4

    15. [15]

      Li, Y.M., Ong, M.C., Wang, K., Li, L.B. and Cheng, Z.S., 2022. Power performance and dynamic responses of an integrated system with a semi-submersible wind turbine and four torus-shaped wave energy converters, Ocean Engineering, 259, 111810. doi: 10.1016/j.oceaneng.2022.111810

    16. [16]

      Liu, K., Liang, H.Z., Ou, J.P., Ye, J.W. and Wang, D.J., 2022. Experimental investigation of the performance of a tuned heave plate energy harvesting system for a semi-submersible platform, Journal of Marine Science and Engineering, 10(1), 45. doi: 10.3390/jmse10010045

    17. [17]

      Luan, C.Y., Gao, Z. and Moan, T., 2016. Design and analysis of a bracesmaller steel 5-MW semi-submersible wind turbine, Proceedings of ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, ASME, Busan.

    18. [18]

      MARINTEK, 2017. SIMO User Manual, Trondheim.

    19. [19]

      MARINTEK, 2018. RIFLEX Theory Manual, Trondheim.

    20. [20]

      Michailides, C., Gao, Z. and Moan, T., 2016. Experimental and numerical study of the response of the offshore combined wind/wave energy concept SFC in extreme environmental conditions, Marine Structures, 50(4), 35–54.

    21. [21]

      Michailides, C., Luan, C.Y., Gao, Z. and Moan, T., 2014. Effect of flap type wave energy converters on the response of a semi-submersible wind turbine in operational conditions, Proceedings of ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, ASME, San Francisco.

    22. [22]

      Moriarty, P.J., 2005. AeroDyn Theory Manual, National Renewable Energy Lab., Golden.

    23. [23]

      Muliawan, M.J., Gao, Z., Moan, T. and Babarit, A., 2011. Analysis of a two-body floating wave energy converter with particular focus on the effects of power take off and mooring systems on energy capture, Proceedings of ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, ASME, Rotterdam, 317–328.

    24. [24]

      Muliawan, M.J., Karimirad, M., Moan, T., Gao, Z., 2012. STC (Spar-Torus Combination): a combined spar-type floating wind turbine and large point absorber floating wave energy converter—promising and challenging, Proceedings of ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, ASME, Rio de Janeiro, pp. 667–676.

    25. [25]

      Muliawan, M.J., Karimirad, M., Gao, Z. and Moan, T., 2013a. Extreme responses of a combined spar-type floating wind turbine and floating wave energy converter (STC) system with survival modes, Ocean Engineering, 65, 71–82. doi: 10.1016/j.oceaneng.2013.03.002

    26. [26]

      Muliawan, M.J., Karimirad, M. and Moan, T., 2013b. Dynamic response and power performance of a combined spar-type floating wind turbine and coaxial floating wave energy converter, Renewable Energy, 50, 47–57. doi: 10.1016/j.renene.2012.05.025

    27. [27]

      Peiffer, A., Roddier, D. and Aubault, A., 2011. Design of a point absorber inside the WindFloat structure, Proceedings of ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, ASME, Rotterdam, 247–255.

    28. [28]

      Ren, N.X., Gao, Z., Moan, T. and Wan, L., 2015. Long-term performance estimation of the Spar–Torus-Combination (STC) system with different survival modes, Ocean Engineering, 108, 716–728. doi: 10.1016/j.oceaneng.2015.08.013

    29. [29]

      Ren, N.X., Ma, Z., Shan, B.H., Ning, D.Z. and Ou, J.P., 2020. Experimental and numerical study of dynamic responses of a new combined TLP type floating wind turbine and a wave energy converter under operational conditions, Renewable Energy, 151, 966–974. doi: 10.1016/j.renene.2019.11.095

    30. [30]

      Sarmiento, J., Iturrioz, A., Ayllón, V., Guanche, R. and Losada, I.J., 2019. Experimental modelling of a multi-use floating platform for wave and wind energy harvesting, Ocean Engineering, 173, 761–773. doi: 10.1016/j.oceaneng.2018.12.046

    31. [31]

      Singh, P.M., Chen, Z.M. and Choi, Y.D., 2016. Numerical analysis for a proposed hybrid system with single HAWT, double HATCT and vertical oscillating wave energy converters on a single tower, Journal of Mechanical Science and Technology, 30(10), 4609–4619. doi: 10.1007/s12206-016-0932-9

    32. [32]

      Wan, L., Gao, Z. and Moan, T., 2014. Model test of the STC concept in survival modes, Proceedings of ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, ASME, San Francisco.

    33. [33]

      Wan, L., Gao, Z. and Moan, T., 2015. Experimental and numerical study of hydrodynamic responses of a combined wind and wave energy converter concept in survival modes, Coastal Engineering, 104, 151–169. doi: 10.1016/j.coastaleng.2015.07.001

    34. [34]

      Wan, L., Gao, Z., Moan, T. and Lugni, C., 2016a. Comparative experimental study of the survivability of a combined wind and wave energy converter in two testing facilities, Ocean Engineering, 111, 82–94. doi: 10.1016/j.oceaneng.2015.10.045

    35. [35]

      Wan, L., Gao, Z., Moan, T. and Lugni, C., 2016b. Experimental and numerical comparisons of hydrodynamic responses for a combined wind and wave energy converter concept under operational conditions, Renewable Energy, 93, 87–100. doi: 10.1016/j.renene.2016.01.087

    36. [36]

      Willis, D.J., Niezrecki, C., Kuchma, D., Hines, E., Arwade, S.R., Barthelmie, R.J., DiPaola, M., Drane, P.J., Hansen, C.J., Inalpolat, M., Mack, J. H., Myers, A. T. and Rotea, M., 2018. Wind energy research: State-of-the-art and future research directions, Renewable Energy, 125(3), 133–154.

  • 加载中
    1. [1]

      Bin-zhen ZHOUJia-hui LIHeng-ming ZHANGLi-fen CHENLei WANGPeng JIN . Wave Extraction and Attenuation Performance of An Edinburgh Duck Wave Energy Converter. China Ocean Engineering, 2021, 35(6): 905-913. doi: 10.1007/s13344-021-0079-z

    2. [2]

      Shao-hui YANGYong-qing WANGHong-zhou HEJun ZHANGHu CHEN . Dynamic Properties and Energy Conversion Efficiency of A Floating Multi-Body Wave Energy Converter. China Ocean Engineering, 2018, 32(3): 347-357. doi: 10.1007/s13344-018-0036-7

    3. [3]

      Yin YEKun-lin WANGYa-ge YOUSong-wei SHENG . Research of Power Take-off System for “Sharp Eagle II” Wave Energy Converter. China Ocean Engineering, 2019, 33(5): 618-627. doi: 10.1007/s13344-019-0060-2

    4. [4]

      De-zhi NINGXiang-yu ZHANGRong-quan WANGMing ZHAO . Hydrodynamic Performance of An Integrated System of Breakwater and A Multi-Chamber OWC Wave Energy Converter. China Ocean Engineering, 2024, 38(4): 543-556. doi: 10.1007/s13344-024-0043-9

    5. [5]

      Jin WANGShu-qi WANGQing-dian JIANGYun-xin XUWei-chao SHI . Effect of Different Raft Shapes on Hydrodynamic Characteristics of the Attenuator-Type Wave Energy Converter. China Ocean Engineering, 2023, 37(4): 645-659. doi: 10.1007/s13344-023-0055-x

    6. [6]

      MILANI FaridehMOGHADDAM Reihaneh Kardehi . Power Maximization of A Point Absorber Wave Energy Converter Using Improved Model Predictive Control. China Ocean Engineering, 2017, 31(4): 510-516. doi: 10.1007/s13344-017-0059-5

    7. [7]

      Yong WANZHANG WenChen-qing FANLi-gang LIYong-shou DAI . Performance Evaluation of Advanced Wave Energy Converters in the Nearshore Areas of the North Indian Ocean. China Ocean Engineering, 2022, 36(6): 980-993. doi: 10.1007/s13344-022-0086-8

    8. [8]

      Bin-zhen ZHOUYu WANGHeng-ming ZHANGPeng JINLei WANGZhao-min ZHOU . Wave Extraction and Attenuation Performance of A Hybrid System of An Edinburgh Duck WEC and A Floating Breakwater. China Ocean Engineering, 2022, 36(2): 167-178. doi: 10.1007/s13344-022-0016-9

    9. [9]

      Lei XIAOYa-ge YOUZhen-peng WANGYa-qun ZHANGShuo HUANGWen-sheng WANG . Single Mode Simulation Calculation of Oscillating Buoy Wave Energy Converter with A Slider. China Ocean Engineering, 2020, 34(4): 547-557. doi: 10.1007/s13344-020-0049-x

    10. [10]

      Shu-ting HUANGYan-jun LIUGang XUEYi-fan XUE . Hydrodynamic Response and Power Performance of A Heave and Pitch Buoy Wave Energy Converter Under Bimodal Ochi−Hubble Wave Spectrum. China Ocean Engineering, 2022, 36(1): 28-37. doi: 10.1007/s13344-022-0002-2

    11. [11]

      邱守强叶家玮王冬姣梁富琳 . Experimental Study on A Pendulum Wave Energy Converter. China Ocean Engineering, 2013, (3): 359-368.

    12. [12]

      Xiong-bo ZHENGYong MALiang ZHANGJin JIANGHeng-xu LIU . Experimental Investigation on the Hydrodynamic Performance of A Wave Energy Converter. China Ocean Engineering, 2017, 31(3): 370-377. doi: 10.1007/s13344-017-0058-6

    13. [13]

      张亚群盛松伟游亚戈吴必军刘洋 . Research on Energy Conversion System of Floating Wave Energy Converter. China Ocean Engineering, 2014, (1): 105-113.

    14. [14]

      Flávio Medeiros SEIBTEduardo Costa COUTOElizaldo Domingues dos SANTOSLiércio André ISOLDILuiz Alberto Oliveira ROCHAPaulo Roberto de Freitas TEIXEIRA . Numerical Study on the Effect of Submerged Depth on the Horizontal Plate Wave Energy Converter. China Ocean Engineering, 2014, (5): 687-700.

    15. [15]

      刘 臻赵环宇崔 莹 . Effects of Rotor Solidity on the Performance of Impulse Turbine for OWC Wave Energy Converter. China Ocean Engineering, 2015, (5): 663-672.

    16. [16]

      Ya-qun ZHANGSong-wei SHENGYa-ge YOUZhen-xin HUANGWen-sheng WANG . Study of Hydrodynamic Characteristics of A Sharp Eagle Wave Energy Converter. China Ocean Engineering, 2017, 31(3): 364-369. doi: 10.1007/s13344-017-0043-0

    17. [17]

      王冬姣邱守强叶家玮 . An Experimental Study on A Trapezoidal Pendulum Wave Energy Converter in Regular Waves. China Ocean Engineering, 2015, (4): 623-632.

    18. [18]

      Wei-xing CHENFeng GAOXiang-dun MENG . Oscillating Body Design for A 3-DOF Wave Energy Converter. China Ocean Engineering, 2018, 32(4): 453-460. doi: 10.1007/s13344-018-0047-4

    19. [19]

      De-min LIXiao-chen DONGHong-da SHIYan-ni LI . Theoretical and Experimental Study of A Coaxial Double-Buoy Wave Energy Converter. China Ocean Engineering, 2021, 35(3): 454-464. doi: 10.1007/s13344-021-0042-z

    20. [20]

      Bin-zhen ZHOUZhi ZHENGMiao-wen HONGPeng JINLei WANGFan-ting CHEN . Dynamic and Power Generation Features of A Wind−Wave Hybrid System Consisting of A Spar-Type Wind Turbine and An Annular Wave Energy Converter in Irregular Waves. China Ocean Engineering, 2023, 37(6): 923-933. doi: 10.1007/s13344-023-0077-4

Metrics
  • PDF Downloads(0)
  • Abstract views(2873)
  • HTML views(2502)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

水利部交通运输部国家能源局南京水利科学研究院 《中国海洋工程》编辑部 版权所有

Address: 34 Hujuguan, Nanjing 210024, China Pos: 210024 Tel: 025-85829388 E-mail: coe@nhri.cn

Support by Beijing Renhe Information Technology Co. Ltd E-mail: info@rhhz.net

苏ICP备05007122号-5

/

DownLoad:  Full-Size Img  PowerPoint
Return