Extreme Responses of An Integrated System with A Semi-Submersible Wind Turbine and Four Torus-Shaped Wave Energy Converters in Different Survival Modes
- Corresponding author: Zheng-shun CHENG, zhengshun.cheng@sjtu.edu.cn
Citation:
Kai WANG, Yu-meng LI, Muk Chen ONG, Ling WAN, Liang-bi LI and Zheng-shun CHENG. Extreme Responses of An Integrated System with A Semi-Submersible Wind Turbine and Four Torus-Shaped Wave Energy Converters in Different Survival Modes[J]. China Ocean Engineering, 2024, 38(5): 877-892.
doi:
10.1007/s13344-024-0067-1
Aubault, A., Alves, M., Sarmento, A., Roddier, D. and Peiffer, A., 2011. Modeling of an oscillating water column on the floating foundation WindFloat, International Conference on Offshore Mechanics and Arctic Engineering, ASME, Rotterdam, 235–246.
Bachynski, E.E. and Moan, T., 2013. Point absorber design for a combined wind and wave energy converter on a tension-leg support structure, Proceedings of ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, ASME, Nantes.
Cheng, Z.S., Wen, T.R., Ong, M.C. and Wang, K., 2019. Power performance and dynamic responses of a combined floating vertical axis wind turbine and wave energy converter concept, Energy, 171, 190–204. doi: 10.1016/j.energy.2018.12.157
DNV, 2017. SESAM User Manual HydroD.
Gao, Z., Moan, T., Wan, L. and Michailides, C., 2016. Comparative numerical and experimental study of two combined wind and wave energy concepts, Journal of Ocean Engineering and Science, 1(1), 36–51. doi: 10.1016/j.joes.2015.12.006
Hallak, T., Karmakar, D. and Soares, C.G., 2021. Hydrodynamic performance of semi-submersible FOWT combined with point-absorber WECs, Maritime Technology and Engineering 5 Volume 2, CRC Press, pp. 577–585.
IEC, 2005. International Standard 61400–1, wind turbines, Part 1 : design requirements, IEC61400-1.
Johannessen, K., Meling, T.S. and Haver, S., 2002. Joint distribution for wind and waves in the Northern North Sea, International Journal of Offshore and Polar Engineering, 12(1), ISOPE-02-12-1-001.
Jonkman, B.J., 2009. TurbSim User ’s Guide, Version 1.50, National Renewable Energy Lab., Golden.
Jonkman, J., Butterfield, S., Musial, W. and Scott, G., 2009. Definition of a 5-MW Reference Wind Turbine for Offshore System Development, National Renewable Energy Lab., Golden.
Kim, K.H., Lee, K., Sohn, J.M., Park, S.W., Choi, J.S. and Hong, K., 2015. Conceptual design of 10MW class floating wave-offshore wind hybrid power generation system, Proceedings of the Twenty-fifth International Offshore and Polar Engineering Conference, ISOPE,Kona, ISOPE–I-15-574.
Kluger, J.M., 2017. Synergistic Design of A Combined Floating Wind Turbine-Wave Energy Converter. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge.
Li, Q.Y., Michailides, C., Gao, Z. and Moan, T., 2018a. A comparative study of different methods for predicting the long-term extreme structural responses of the combined wind and wave energy concept semisubmersible wind energy and flap-type wave energy converter, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 232(1), 85–96. doi: 10.1177/1475090217726886
Li, Q.Y., Ren, N. X., Gao, Z. and Moan, T., 2018b. Efficient determination of the long-term extreme responses by the modified environmental contour method for a combined wind turbine and wave energy converter system, Journal of Ocean Engineering and Marine Energy, 4(2), 123–135. doi: 10.1007/s40722-018-0111-4
Li, Y.M., Ong, M.C., Wang, K., Li, L.B. and Cheng, Z.S., 2022. Power performance and dynamic responses of an integrated system with a semi-submersible wind turbine and four torus-shaped wave energy converters, Ocean Engineering, 259, 111810. doi: 10.1016/j.oceaneng.2022.111810
Liu, K., Liang, H.Z., Ou, J.P., Ye, J.W. and Wang, D.J., 2022. Experimental investigation of the performance of a tuned heave plate energy harvesting system for a semi-submersible platform, Journal of Marine Science and Engineering, 10(1), 45. doi: 10.3390/jmse10010045
Luan, C.Y., Gao, Z. and Moan, T., 2016. Design and analysis of a bracesmaller steel 5-MW semi-submersible wind turbine, Proceedings of ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, ASME, Busan.
MARINTEK, 2017. SIMO User Manual, Trondheim.
MARINTEK, 2018. RIFLEX Theory Manual, Trondheim.
Michailides, C., Gao, Z. and Moan, T., 2016. Experimental and numerical study of the response of the offshore combined wind/wave energy concept SFC in extreme environmental conditions, Marine Structures, 50(4), 35–54.
Michailides, C., Luan, C.Y., Gao, Z. and Moan, T., 2014. Effect of flap type wave energy converters on the response of a semi-submersible wind turbine in operational conditions, Proceedings of ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, ASME, San Francisco.
Moriarty, P.J., 2005. AeroDyn Theory Manual, National Renewable Energy Lab., Golden.
Muliawan, M.J., Gao, Z., Moan, T. and Babarit, A., 2011. Analysis of a two-body floating wave energy converter with particular focus on the effects of power take off and mooring systems on energy capture, Proceedings of ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, ASME, Rotterdam, 317–328.
Muliawan, M.J., Karimirad, M., Moan, T., Gao, Z., 2012. STC (Spar-Torus Combination): a combined spar-type floating wind turbine and large point absorber floating wave energy converter—promising and challenging, Proceedings of ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, ASME, Rio de Janeiro, pp. 667–676.
Muliawan, M.J., Karimirad, M., Gao, Z. and Moan, T., 2013a. Extreme responses of a combined spar-type floating wind turbine and floating wave energy converter (STC) system with survival modes, Ocean Engineering, 65, 71–82. doi: 10.1016/j.oceaneng.2013.03.002
Muliawan, M.J., Karimirad, M. and Moan, T., 2013b. Dynamic response and power performance of a combined spar-type floating wind turbine and coaxial floating wave energy converter, Renewable Energy, 50, 47–57. doi: 10.1016/j.renene.2012.05.025
Peiffer, A., Roddier, D. and Aubault, A., 2011. Design of a point absorber inside the WindFloat structure, Proceedings of ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, ASME, Rotterdam, 247–255.
Ren, N.X., Gao, Z., Moan, T. and Wan, L., 2015. Long-term performance estimation of the Spar–Torus-Combination (STC) system with different survival modes, Ocean Engineering, 108, 716–728. doi: 10.1016/j.oceaneng.2015.08.013
Ren, N.X., Ma, Z., Shan, B.H., Ning, D.Z. and Ou, J.P., 2020. Experimental and numerical study of dynamic responses of a new combined TLP type floating wind turbine and a wave energy converter under operational conditions, Renewable Energy, 151, 966–974. doi: 10.1016/j.renene.2019.11.095
Sarmiento, J., Iturrioz, A., Ayllón, V., Guanche, R. and Losada, I.J., 2019. Experimental modelling of a multi-use floating platform for wave and wind energy harvesting, Ocean Engineering, 173, 761–773. doi: 10.1016/j.oceaneng.2018.12.046
Singh, P.M., Chen, Z.M. and Choi, Y.D., 2016. Numerical analysis for a proposed hybrid system with single HAWT, double HATCT and vertical oscillating wave energy converters on a single tower, Journal of Mechanical Science and Technology, 30(10), 4609–4619. doi: 10.1007/s12206-016-0932-9
Wan, L., Gao, Z. and Moan, T., 2014. Model test of the STC concept in survival modes, Proceedings of ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, ASME, San Francisco.
Wan, L., Gao, Z. and Moan, T., 2015. Experimental and numerical study of hydrodynamic responses of a combined wind and wave energy converter concept in survival modes, Coastal Engineering, 104, 151–169. doi: 10.1016/j.coastaleng.2015.07.001
Wan, L., Gao, Z., Moan, T. and Lugni, C., 2016a. Comparative experimental study of the survivability of a combined wind and wave energy converter in two testing facilities, Ocean Engineering, 111, 82–94. doi: 10.1016/j.oceaneng.2015.10.045
Wan, L., Gao, Z., Moan, T. and Lugni, C., 2016b. Experimental and numerical comparisons of hydrodynamic responses for a combined wind and wave energy converter concept under operational conditions, Renewable Energy, 93, 87–100. doi: 10.1016/j.renene.2016.01.087
Willis, D.J., Niezrecki, C., Kuchma, D., Hines, E., Arwade, S.R., Barthelmie, R.J., DiPaola, M., Drane, P.J., Hansen, C.J., Inalpolat, M., Mack, J. H., Myers, A. T. and Rotea, M., 2018. Wind energy research: State-of-the-art and future research directions, Renewable Energy, 125(3), 133–154.
Wan-zhen YUE , Kun-lin WANG , Jia-qiang JIANG , Song-wei SHENG , Wen-zhao LU , Teng HE , Xian-yuan YANG . Hydrodynamic Performance and Structural Response of a Sharp Eagle Wave Energy Converter Platform Under Extreme Sea States. China Ocean Engineering, 2025, 39(2): 373-382. doi: 10.1007/s13344-025-0029-2
Bin-zhen ZHOU , Jia-hui LI , Heng-ming ZHANG , Li-fen CHEN , Lei WANG , Peng JIN . Wave Extraction and Attenuation Performance of An Edinburgh Duck Wave Energy Converter. China Ocean Engineering, 2021, 35(6): 905-913. doi: 10.1007/s13344-021-0079-z
Shao-hui YANG , Yong-qing WANG , Hong-zhou HE , Jun ZHANG , Hu CHEN . Dynamic Properties and Energy Conversion Efficiency of A Floating Multi-Body Wave Energy Converter. China Ocean Engineering, 2018, 32(3): 347-357. doi: 10.1007/s13344-018-0036-7
Jin WANG , Shu-qi WANG , Qing-dian JIANG , Yun-xin XU , Wei-chao SHI . Effect of Different Raft Shapes on Hydrodynamic Characteristics of the Attenuator-Type Wave Energy Converter. China Ocean Engineering, 2023, 37(4): 645-659. doi: 10.1007/s13344-023-0055-x
Wen-bin LAI , Jia-long LI , Si-zhang RONG , Hong-kun YANG , Xiong-bo ZHENG . Research on the Performance Optimization of a Hydraulic PTO System for a “Dolphin 1” Oscillating-Body Wave Energy Converter. China Ocean Engineering, 2025, 39(1): 166-178. doi: 10.1007/s13344-025-0013-x
De-zhi NING , Xiang-yu ZHANG , Rong-quan WANG , Ming ZHAO . Hydrodynamic Performance of An Integrated System of Breakwater and A Multi-Chamber OWC Wave Energy Converter. China Ocean Engineering, 2024, 38(4): 543-556. doi: 10.1007/s13344-024-0043-9
MILANI Farideh , MOGHADDAM Reihaneh Kardehi . Power Maximization of A Point Absorber Wave Energy Converter Using Improved Model Predictive Control. China Ocean Engineering, 2017, 31(4): 510-516. doi: 10.1007/s13344-017-0059-5
Yin YE , Kun-lin WANG , Ya-ge YOU , Song-wei SHENG . Research of Power Take-off System for “Sharp Eagle II” Wave Energy Converter. China Ocean Engineering, 2019, 33(5): 618-627. doi: 10.1007/s13344-019-0060-2
Yong WAN , ZHANG Wen , Chen-qing FAN , Li-gang LI , Yong-shou DAI . Performance Evaluation of Advanced Wave Energy Converters in the Nearshore Areas of the North Indian Ocean. China Ocean Engineering, 2022, 36(6): 980-993. doi: 10.1007/s13344-022-0086-8
Bin-zhen ZHOU , Yu WANG , Heng-ming ZHANG , Peng JIN , Lei WANG , Zhao-min ZHOU . Wave Extraction and Attenuation Performance of A Hybrid System of An Edinburgh Duck WEC and A Floating Breakwater. China Ocean Engineering, 2022, 36(2): 167-178. doi: 10.1007/s13344-022-0016-9
Lei XIAO , Ya-ge YOU , Zhen-peng WANG , Ya-qun ZHANG , Shuo HUANG , Wen-sheng WANG . Single Mode Simulation Calculation of Oscillating Buoy Wave Energy Converter with A Slider. China Ocean Engineering, 2020, 34(4): 547-557. doi: 10.1007/s13344-020-0049-x
Shu-ting HUANG , Yan-jun LIU , Gang XUE , Yi-fan XUE . Hydrodynamic Response and Power Performance of A Heave and Pitch Buoy Wave Energy Converter Under Bimodal Ochi−Hubble Wave Spectrum. China Ocean Engineering, 2022, 36(1): 28-37. doi: 10.1007/s13344-022-0002-2
邱守强 , 叶家玮 , 王冬姣 , 梁富琳 . Experimental Study on A Pendulum Wave Energy Converter. China Ocean Engineering, 2013, (3): 359-368.
Xiong-bo ZHENG , Yong MA , Liang ZHANG , Jin JIANG , Heng-xu LIU . Experimental Investigation on the Hydrodynamic Performance of A Wave Energy Converter. China Ocean Engineering, 2017, 31(3): 370-377. doi: 10.1007/s13344-017-0058-6
张亚群 , 盛松伟 , 游亚戈 , 吴必军 , 刘洋 . Research on Energy Conversion System of Floating Wave Energy Converter. China Ocean Engineering, 2014, (1): 105-113.
Flávio Medeiros SEIBT , Eduardo Costa COUTO , Elizaldo Domingues dos SANTOS , Liércio André ISOLDI , Luiz Alberto Oliveira ROCHA , Paulo Roberto de Freitas TEIXEIRA . Numerical Study on the Effect of Submerged Depth on the Horizontal Plate Wave Energy Converter. China Ocean Engineering, 2014, (5): 687-700.
刘 臻 , 赵环宇 , 崔 莹 . Effects of Rotor Solidity on the Performance of Impulse Turbine for OWC Wave Energy Converter. China Ocean Engineering, 2015, (5): 663-672.
De-min LI , Xiao-chen DONG , Hong-da SHI , Yan-ni LI . Theoretical and Experimental Study of A Coaxial Double-Buoy Wave Energy Converter. China Ocean Engineering, 2021, 35(3): 454-464. doi: 10.1007/s13344-021-0042-z
王冬姣 , 邱守强 , 叶家玮 . An Experimental Study on A Trapezoidal Pendulum Wave Energy Converter in Regular Waves. China Ocean Engineering, 2015, (4): 623-632.
Wei-xing CHEN , Feng GAO , Xiang-dun MENG . Oscillating Body Design for A 3-DOF Wave Energy Converter. China Ocean Engineering, 2018, 32(4): 453-460. doi: 10.1007/s13344-018-0047-4
水利部交通运输部国家能源局南京水利科学研究院 《中国海洋工程》编辑部 版权所有
Address: 34 Hujuguan, Nanjing 210024, China Pos: 210024 Tel: 025-85829388 E-mail: coe@nhri.cn
Support by Beijing Renhe Information Technology Co. Ltd E-mail: info@rhhz.net