A Wave Superposition–Finite Element Method for Calculating the Radiated Noise Generated by Volumetric Targets in Shallow Water
- Corresponding author: Hai-chao LI, lihaichao@hrbeu.edu.cn
Citation:
Yu-hang TANG, Zhe ZHAO, Hai-chao LI, Fu-zhen PANG, Yang TANG and Yuan DU. A Wave Superposition–Finite Element Method for Calculating the Radiated Noise Generated by Volumetric Targets in Shallow Water[J]. China Ocean Engineering, 2024, 38(5): 845-854.
doi:
10.1007/s13344-024-0066-2
Bellotti, G., Beltrami, G.M. and De Girolamo, P., 2003. Internal generation of waves in 2D fully elliptic mild-slope equation FEM models, Coastal Engineering, 49(1-2), 71–81. doi: 10.1016/S0378-3839(03)00047-4
Belov, A.I. and Kuznetsov, G.N., 2013. Acoustic calibration of the signal propagation path in the shallow water, Physics of Wave Phenomena, 21(3), 177–182. doi: 10.3103/S1541308X13030023
Benjamin, A.K., Ouserigha, C.E. and Watson, A.N., 2021. Numerical simulation of millimeter wave scattering by foam covered flat sea-surface modelled as sequences of thin phase scattering screens, International Journal of Scientific and Research Publications, 11(10), 456–467. doi: 10.29322/IJSRP.11.10.2021.p11852
Bottero, A., Cristini, P., Komatitsch, D. and Asch, M., 2016. An axisymmetric time-domain spectral-element method for full-wave simulations: Application to ocean acoustics, The Journal of the Acoustical Society of America, 140(5), 3520–3530. doi: 10.1121/1.4965964
Bottero, A., Cristini, P., Komatitsch, D. and Brissaud, Q., 2018. Broadband transmission losses and time dispersion maps from time-domain numerical simulations in ocean acoustics, The Journal of the Acoustical Society of America, 144(3), EL222–EL228. doi: 10.1121/1.5055787
Cerqueira, R., Trocoli, T., Albiez, J. and Oliveira, L., 2020. A rasterized ray-tracer pipeline for real-time, multi-device sonar simulation, Graphical Models, 111, 101086. doi: 10.1016/j.gmod.2020.101086
Deavenport, R.L., Gilchrest, M.J. and Thomson, D.J., 2019. Acoustic modelling of a transient source in shallow water, Applied Acoustics, 150, 227–235. doi: 10.1016/j.apacoust.2019.01.028
Ding, R. and Liu, S.G., 2021. Underwater sound propagation for virtual environments, The Visual Computer, 37(9), 2797–2807.
He, T.J., Humphrey, V.F., Mo, S.Q. and Fang, E.Z., 2020. Three-dimensional sound scattering from transversely symmetric surface waves in deep and shallow water using the equivalent source method, The Journal of the Acoustical Society of America, 148(1), 73–84. doi: 10.1121/10.0001522
He, T.J., Mo, S.Q., Fang, E.Z., Wang, M.G. and Zhang, R., 2021a. Modeling three-dimensional underwater acoustic propagation over multi-layered fluid seabeds using the equivalent source method, The Journal of the Acoustical Society of America, 150(4), 2854–2864. doi: 10.1121/10.0006663
He, T.J., Mo, S.Q., Guo, W. and Fang, E.Z., 2021b. Modeling propagation in shallow water with the range-dependent sea surfaces and fluid seabeds using the equivalent source method, The Journal of the Acoustical Society of America, 149(2), 997–1011. doi: 10.1121/10.0003385
Hernández, M.T.A., Díaz, A.D., Rascón, C.H.R. and Balderas, R.C., 2023. A new finite element for the analysis of functionally graded shells, Thin-Walled Structures, 186, 110659. doi: 10.1016/j.tws.2023.110659
Hospital-Bravo, R., Sarrate, J. and Díez, P., 2016. Numerical modeling of undersea acoustics using a partition of unity method with plane waves enrichment, Computational Mechanics, 57(5), 717–732. doi: 10.1007/s00466-015-1257-8
Hovem, J.M. and Korakas, A., 2014. Modeling low-frequency anthropogenic noise in the Oceans: A comparison of propagation models, Marine Technology Society Journal, 48(2), 72–80. doi: 10.4031/MTSJ.48.2.8
Isakson, M.J. and Chotiros, N.P., 2011. Finite element modeling of reverberation and transmission loss in shallow water waveguides with rough boundaries, The Journal of the Acoustical Society of America, 129(3), 1273–1279. doi: 10.1121/1.3531810
Isakson, M.J. and Chotiros, N.P., 2015. Finite element modeling of acoustic scattering from fluid and elastic rough interfaces, IEEE Journal of Oceanic Engineering, 40(2), 475–484. doi: 10.1109/JOE.2014.2313060
Isakson, M.J., Goldsberry, B. and Chotiros, N.P., 2014. A three-dimensional, longitudinally-invariant finite element model for acoustic propagation in shallow water waveguides, The Journal of the Acoustical Society of America, 136(3), EL206–EL211. doi: 10.1121/1.4890195
Jensen, F.B., Kuperman, W.A., Porter, M.B. and Schmidt, H., 2011. Computational Ocean Acoustics, second ed., Springer, New York.
Jia, W.C., Chen, M.X., Zhou, Z.W. and Xie, K., 2022. Effects of non-axisymmetric internal structures on vibro-acoustic characteristics of a submerged cylindrical shell using wavenumber analysis, Thin-Walled Structures, 171, 108758. doi: 10.1016/j.tws.2021.108758
Koopmann, G.H., Song, L.M. and Fahnline, J.B., 1989. A method for computing acoustic fields based on the principle of wave superposition, The Journal of the Acoustical Society of America, 86(6), 2433–2438. doi: 10.1121/1.398450
Lee, S., 2017. Review: The use of equivalent source method in computational acoustics, Journal of Computational Acoustics, 25(1), 1630001. doi: 10.1142/S0218396X16300012
Li, C.X., Campbell, B.K., Liu, Y.M. and Yue, D.K.P., 2019. A fast multi-layer boundary element method for direct numerical simulation of sound propagation in shallow water environments, Journal of Computational Physics, 392, 694–712. doi: 10.1016/j.jcp.2019.04.068
Lu, Z.H., Zhang, Z.H. and Gu, J.N., 2013. Numerical calculation of seafloor synthetic seismograms caused by low frequency point sound source, Defence Technology, 9(2), 98–104. doi: 10.1016/j.dt.2012.12.001
Lu, Z.H., Zhang, Z.H. and Gu, J.N., 2015. Analysis on the frequency dispersion characteristics of seismic wave caused by low frequency sound source in shallow sea, Ocean Engineering, 106, 354–359. doi: 10.1016/j.oceaneng.2015.07.019
Panahi, E. and Younesian, D., 2020. Acoustic performance enhancement in a railway passenger carriage using hybrid ray-tracing and image-source method, Applied Acoustics, 170, 107527. doi: 10.1016/j.apacoust.2020.107527
Porter, M.B., 2019. Beam tracing for two- and three-dimensional problems in ocean acoustics, The Journal of the Acoustical Society of America, 146(3), 2016–2029. doi: 10.1121/1.5125262
Shang, D.J., Qian, Z.W., He, Y.A. and Xiao, Y., 2018. Sound radiation of cylinder in shallow water investigated by combined wave superposition method, Acta Physica Sinica, 67(8), 084301. (in Chinese)
Tang, G.Q., Cheng, L., Lu, L., Teng, Y.F., Zhao, M. and An, H.W., 2018. Effect of oscillatory boundary layer on hydrodynamic forces on pipelines, Coastal Engineering, 140, 114–123. doi: 10.1016/j.coastaleng.2018.06.006
Zhang, C., Liu, Y.H., Shang, D.J. and Khan, I.U., 2020. A method for predicting radiated acoustic field in shallow sea based on wave superposition and ray, Applied Sciences, 10(3), 917. doi: 10.3390/app10030917
Zhang, S.Z. and Pu, S.C., 2021. Coherent mode coupling in shallow water overlaying sloping elastic ocean bottom, Acta Physica Sinica, 70(21), 214304. (in Chinese)
Zhou, H., Chen, X.F. and Chang, Y., 2010. Review on localized boundary integral equation: Discrete wavenumber method for 2D irregular layers, Earthquake Science, 23(2), 129–137. doi: 10.1007/s11589-009-0070-x
Zhu, Z.J., Wang, Y.X., Zhu, X.Q., Liu, W., Lan, Q., Xiao, W.B. and Cheng, X.H., 2021. Parallel optimization of three-dimensional wedge-shaped underwater acoustic propagation based on MPI+OpenMP hybrid programming model, The Journal of Supercomputing, 77(5), 4988–5018. doi: 10.1007/s11227-020-03466-w
Xiao HAN , Jing-wei YIN , Bing LIU , Long-xiang GUO . MIMO Underwater Acoustic Communication in Shallow Water with Ice Cover. China Ocean Engineering, 2019, 33(2): 237-244. doi: 10.1007/s13344-019-0023-7
Wen-bo ZHU , Guo-liang DAI , Wei-ming GONG , Xue-liang ZHAO . Study on Unloading Creep Characteristics of the Soil and Application of the Stress-Dependent Creep Model in Suction Caisson Foundation. China Ocean Engineering, 2022, 36(1): 123-132. doi: 10.1007/s13344-022-0011-1
. Parametric Analysis of A Submerged Cylindrical Shell Subjected to Shock Waves. China Ocean Engineering, 2007, (1): -.
Pei-wen CONG , Ying-yi LIU , Ying GOU , Bin TENG . Wave Radiation by A Submerged Ring Plate in Water of Finite Depth. China Ocean Engineering, 2019, 33(6): 660-672. doi: 10.1007/s13344-019-0064-y
. Dynamic Structure-Fluid Interaction Response of a Composite Cylindrical Shell Submerged in Water. China Ocean Engineering, 1998, (3): -.
. Wave Numerical Model for Shallow Water. China Ocean Engineering, 2000, (2): -.
. Vibration and Acoustic Radiation from Orthogonally Stiffened Infinite Circular Cylindrical Shells in Water. China Ocean Engineering, 2002, (4): -.
. Nonlinear Effect of Wave Propagation in Shallow Water. China Ocean Engineering, 1999, (1): -.
. Scaled Boundary Finite Element Analysis of Wave Passing A Submerged Breakwater. China Ocean Engineering, 2008, (2): -.
. A Finite Element Solution of Wave Forces on Submerged Horizontal Circular Cylinders. China Ocean Engineering, 2004, (3): -.
. Stream Function Wave Derived by Unified Variational Principle of Water Gravity Wave. China Ocean Engineering, 1997, (2): -.
. Theoretical Model and Dynamic Analysis of Soft Yoke Mooring System. China Ocean Engineering, 2008, (2): -.
. Vibration and Acoustic Radiation from Submerged Spherical Double-Shell. China Ocean Engineering, 2003, (3): -.
. Impact Buckling and Post-Buckling of Elasto-Viscoplastic Cylindrical Shell Under Torsion. China Ocean Engineering, 1997, (1): -.
Xiao-yu WU , Zhong DU . Collisions Between Lumps/Rogue Waves and Solitons for A (3+1)-Dimensional Generalized Variable-Coefficient Shallow Water Wave Equation. China Ocean Engineering, 2022, 36(5): 808-813. doi: 10.1007/s13344-022-0072-1
. A Finite Element Method for Cracked Components of Structures. China Ocean Engineering, 2003, (2): -.
. Nonlinear Finite Element Analysis of Ocean Cables. China Ocean Engineering, 2004, (4): -.
袁 梦 , 范 菊 , 缪国平 , 朱仁传 , 黄祥鹿 . Studies on Mooring Energy Based on Finite Element Method. China Ocean Engineering, 2010, (4): 709-724.
肖 鹏 , 杨坤德 , 雷 波 . Model of Shipping Noise in the Deep Water: Directional Density and Spatial Coherence Functions. China Ocean Engineering, 2016, (4): 591-601.
Yan-li HE , Yu-xiang MA , Xiao-zhou MA , Guo-hai DONG . Experimental Investigation on the Extreme Waves Induced by Single Wave Packets in Finite Water Depth. China Ocean Engineering, 2018, 32(4): 375-387. doi: 10.1007/s13344-018-0040-y
水利部交通运输部国家能源局南京水利科学研究院 《中国海洋工程》编辑部 版权所有
Address: 34 Hujuguan, Nanjing 210024, China Pos: 210024 Tel: 025-85829388 E-mail: coe@nhri.cn
Support by Beijing Renhe Information Technology Co. Ltd E-mail: info@rhhz.net