ISSN  0890-5487 CN 32-1441/P

Citation: Yu-hang TANG, Zhe ZHAO, Hai-chao LI, Fu-zhen PANG, Yang TANG and Yuan DU. A Wave Superposition–Finite Element Method for Calculating the Radiated Noise Generated by Volumetric Targets in Shallow Water[J]. China Ocean Engineering, 2024, 38(5): 845-854. doi: 10.1007/s13344-024-0066-2 shu

A Wave Superposition–Finite Element Method for Calculating the Radiated Noise Generated by Volumetric Targets in Shallow Water

  • Corresponding author: Hai-chao LI, lihaichao@hrbeu.edu.cn
  • Received Date: 2023-11-13
    Accepted Date: 2024-04-14
    Available Online: 2024-10-22

  • A combined method of wave superposition and finite element is proposed to solve the radiation noise of targets in shallow sea. Taking the sound propagation of spherical sound source in shallow sea as an example, the radiation sound field of the spherical sound source is equivalent to the linear superposition of the radiation sound field of several internal point sound sources, and then the radiated noise induced by spherical sound source can be predicted quickly. The accuracy and efficiency of the method are verified by comparing with the numerical results of finite element method, and the rapid prediction of underwater radiated noise of cylindrical shell is carried out based on the method. The results show that compared with the finite element method, the relative error of the calculation results under different simulation conditions does not exceed 0.1%, and the calculation time is about 1/10 of the finite element method, so this method can be used to solve the radiated noise of shallow underwater targets.
  • 加载中
    1. [1]

      Bellotti, G., Beltrami, G.M. and De Girolamo, P., 2003. Internal generation of waves in 2D fully elliptic mild-slope equation FEM models, Coastal Engineering, 49(1-2), 71–81. doi: 10.1016/S0378-3839(03)00047-4

    2. [2]

      Belov, A.I. and Kuznetsov, G.N., 2013. Acoustic calibration of the signal propagation path in the shallow water, Physics of Wave Phenomena, 21(3), 177–182. doi: 10.3103/S1541308X13030023

    3. [3]

      Benjamin, A.K., Ouserigha, C.E. and Watson, A.N., 2021. Numerical simulation of millimeter wave scattering by foam covered flat sea-surface modelled as sequences of thin phase scattering screens, International Journal of Scientific and Research Publications, 11(10), 456–467. doi: 10.29322/IJSRP.11.10.2021.p11852

    4. [4]

      Bottero, A., Cristini, P., Komatitsch, D. and Asch, M., 2016. An axisymmetric time-domain spectral-element method for full-wave simulations: Application to ocean acoustics, The Journal of the Acoustical Society of America, 140(5), 3520–3530. doi: 10.1121/1.4965964

    5. [5]

      Bottero, A., Cristini, P., Komatitsch, D. and Brissaud, Q., 2018. Broadband transmission losses and time dispersion maps from time-domain numerical simulations in ocean acoustics, The Journal of the Acoustical Society of America, 144(3), EL222–EL228. doi: 10.1121/1.5055787

    6. [6]

      Cerqueira, R., Trocoli, T., Albiez, J. and Oliveira, L., 2020. A rasterized ray-tracer pipeline for real-time, multi-device sonar simulation, Graphical Models, 111, 101086. doi: 10.1016/j.gmod.2020.101086

    7. [7]

      Deavenport, R.L., Gilchrest, M.J. and Thomson, D.J., 2019. Acoustic modelling of a transient source in shallow water, Applied Acoustics, 150, 227–235. doi: 10.1016/j.apacoust.2019.01.028

    8. [8]

      Ding, R. and Liu, S.G., 2021. Underwater sound propagation for virtual environments, The Visual Computer, 37(9), 2797–2807.

    9. [9]

      He, T.J., Humphrey, V.F., Mo, S.Q. and Fang, E.Z., 2020. Three-dimensional sound scattering from transversely symmetric surface waves in deep and shallow water using the equivalent source method, The Journal of the Acoustical Society of America, 148(1), 73–84. doi: 10.1121/10.0001522

    10. [10]

      He, T.J., Mo, S.Q., Fang, E.Z., Wang, M.G. and Zhang, R., 2021a. Modeling three-dimensional underwater acoustic propagation over multi-layered fluid seabeds using the equivalent source method, The Journal of the Acoustical Society of America, 150(4), 2854–2864. doi: 10.1121/10.0006663

    11. [11]

      He, T.J., Mo, S.Q., Guo, W. and Fang, E.Z., 2021b. Modeling propagation in shallow water with the range-dependent sea surfaces and fluid seabeds using the equivalent source method, The Journal of the Acoustical Society of America, 149(2), 997–1011. doi: 10.1121/10.0003385

    12. [12]

      Hernández, M.T.A., Díaz, A.D., Rascón, C.H.R. and Balderas, R.C., 2023. A new finite element for the analysis of functionally graded shells, Thin-Walled Structures, 186, 110659. doi: 10.1016/j.tws.2023.110659

    13. [13]

      Hospital-Bravo, R., Sarrate, J. and Díez, P., 2016. Numerical modeling of undersea acoustics using a partition of unity method with plane waves enrichment, Computational Mechanics, 57(5), 717–732. doi: 10.1007/s00466-015-1257-8

    14. [14]

      Hovem, J.M. and Korakas, A., 2014. Modeling low-frequency anthropogenic noise in the Oceans: A comparison of propagation models, Marine Technology Society Journal, 48(2), 72–80. doi: 10.4031/MTSJ.48.2.8

    15. [15]

      Isakson, M.J. and Chotiros, N.P., 2011. Finite element modeling of reverberation and transmission loss in shallow water waveguides with rough boundaries, The Journal of the Acoustical Society of America, 129(3), 1273–1279. doi: 10.1121/1.3531810

    16. [16]

      Isakson, M.J. and Chotiros, N.P., 2015. Finite element modeling of acoustic scattering from fluid and elastic rough interfaces, IEEE Journal of Oceanic Engineering, 40(2), 475–484. doi: 10.1109/JOE.2014.2313060

    17. [17]

      Isakson, M.J., Goldsberry, B. and Chotiros, N.P., 2014. A three-dimensional, longitudinally-invariant finite element model for acoustic propagation in shallow water waveguides, The Journal of the Acoustical Society of America, 136(3), EL206–EL211. doi: 10.1121/1.4890195

    18. [18]

      Jensen, F.B., Kuperman, W.A., Porter, M.B. and Schmidt, H., 2011. Computational Ocean Acoustics, second ed., Springer, New York.

    19. [19]

      Jia, W.C., Chen, M.X., Zhou, Z.W. and Xie, K., 2022. Effects of non-axisymmetric internal structures on vibro-acoustic characteristics of a submerged cylindrical shell using wavenumber analysis, Thin-Walled Structures, 171, 108758. doi: 10.1016/j.tws.2021.108758

    20. [20]

      Koopmann, G.H., Song, L.M. and Fahnline, J.B., 1989. A method for computing acoustic fields based on the principle of wave superposition, The Journal of the Acoustical Society of America, 86(6), 2433–2438. doi: 10.1121/1.398450

    21. [21]

      Lee, S., 2017. Review: The use of equivalent source method in computational acoustics, Journal of Computational Acoustics, 25(1), 1630001. doi: 10.1142/S0218396X16300012

    22. [22]

      Li, C.X., Campbell, B.K., Liu, Y.M. and Yue, D.K.P., 2019. A fast multi-layer boundary element method for direct numerical simulation of sound propagation in shallow water environments, Journal of Computational Physics, 392, 694–712. doi: 10.1016/j.jcp.2019.04.068

    23. [23]

      Lu, Z.H., Zhang, Z.H. and Gu, J.N., 2013. Numerical calculation of seafloor synthetic seismograms caused by low frequency point sound source, Defence Technology, 9(2), 98–104. doi: 10.1016/j.dt.2012.12.001

    24. [24]

      Lu, Z.H., Zhang, Z.H. and Gu, J.N., 2015. Analysis on the frequency dispersion characteristics of seismic wave caused by low frequency sound source in shallow sea, Ocean Engineering, 106, 354–359. doi: 10.1016/j.oceaneng.2015.07.019

    25. [25]

      Panahi, E. and Younesian, D., 2020. Acoustic performance enhancement in a railway passenger carriage using hybrid ray-tracing and image-source method, Applied Acoustics, 170, 107527. doi: 10.1016/j.apacoust.2020.107527

    26. [26]

      Porter, M.B., 2019. Beam tracing for two- and three-dimensional problems in ocean acoustics, The Journal of the Acoustical Society of America, 146(3), 2016–2029. doi: 10.1121/1.5125262

    27. [27]

      Shang, D.J., Qian, Z.W., He, Y.A. and Xiao, Y., 2018. Sound radiation of cylinder in shallow water investigated by combined wave superposition method, Acta Physica Sinica, 67(8), 084301. (in Chinese)

    28. [28]

      Tang, G.Q., Cheng, L., Lu, L., Teng, Y.F., Zhao, M. and An, H.W., 2018. Effect of oscillatory boundary layer on hydrodynamic forces on pipelines, Coastal Engineering, 140, 114–123. doi: 10.1016/j.coastaleng.2018.06.006

    29. [29]

      Zhang, C., Liu, Y.H., Shang, D.J. and Khan, I.U., 2020. A method for predicting radiated acoustic field in shallow sea based on wave superposition and ray, Applied Sciences, 10(3), 917. doi: 10.3390/app10030917

    30. [30]

      Zhang, S.Z. and Pu, S.C., 2021. Coherent mode coupling in shallow water overlaying sloping elastic ocean bottom, Acta Physica Sinica, 70(21), 214304. (in Chinese)

    31. [31]

      Zhou, H., Chen, X.F. and Chang, Y., 2010. Review on localized boundary integral equation: Discrete wavenumber method for 2D irregular layers, Earthquake Science, 23(2), 129–137. doi: 10.1007/s11589-009-0070-x

    32. [32]

      Zhu, Z.J., Wang, Y.X., Zhu, X.Q., Liu, W., Lan, Q., Xiao, W.B. and Cheng, X.H., 2021. Parallel optimization of three-dimensional wedge-shaped underwater acoustic propagation based on MPI+OpenMP hybrid programming model, The Journal of Supercomputing, 77(5), 4988–5018. doi: 10.1007/s11227-020-03466-w

  • 加载中
    1. [1]

      Xiao HANJing-wei YINBing LIULong-xiang GUO . MIMO Underwater Acoustic Communication in Shallow Water with Ice Cover. China Ocean Engineering, 2019, 33(2): 237-244. doi: 10.1007/s13344-019-0023-7

    2. [2]

      Wen-bo ZHUGuo-liang DAIWei-ming GONGXue-liang ZHAO . Study on Unloading Creep Characteristics of the Soil and Application of the Stress-Dependent Creep Model in Suction Caisson Foundation. China Ocean Engineering, 2022, 36(1): 123-132. doi: 10.1007/s13344-022-0011-1

    3. [3]

      . Parametric Analysis of A Submerged Cylindrical Shell Subjected to Shock Waves. China Ocean Engineering, 2007, (1): -.

    4. [4]

      Pei-wen CONGYing-yi LIUYing GOUBin TENG . Wave Radiation by A Submerged Ring Plate in Water of Finite Depth. China Ocean Engineering, 2019, 33(6): 660-672. doi: 10.1007/s13344-019-0064-y

    5. [5]

      . Dynamic Structure-Fluid Interaction Response of a Composite Cylindrical Shell Submerged in Water. China Ocean Engineering, 1998, (3): -.

    6. [6]

      . Wave Numerical Model for Shallow Water. China Ocean Engineering, 2000, (2): -.

    7. [7]

      . Vibration and Acoustic Radiation from Orthogonally Stiffened Infinite Circular Cylindrical Shells in Water. China Ocean Engineering, 2002, (4): -.

    8. [8]

      . Nonlinear Effect of Wave Propagation in Shallow Water. China Ocean Engineering, 1999, (1): -.

    9. [9]

      . Scaled Boundary Finite Element Analysis of Wave Passing A Submerged Breakwater. China Ocean Engineering, 2008, (2): -.

    10. [10]

      . A Finite Element Solution of Wave Forces on Submerged Horizontal Circular Cylinders. China Ocean Engineering, 2004, (3): -.

    11. [11]

      . Stream Function Wave Derived by Unified Variational Principle of Water Gravity Wave. China Ocean Engineering, 1997, (2): -.

    12. [12]

      . Theoretical Model and Dynamic Analysis of Soft Yoke Mooring System. China Ocean Engineering, 2008, (2): -.

    13. [13]

      . Vibration and Acoustic Radiation from Submerged Spherical Double-Shell. China Ocean Engineering, 2003, (3): -.

    14. [14]

      . Impact Buckling and Post-Buckling of Elasto-Viscoplastic Cylindrical Shell Under Torsion. China Ocean Engineering, 1997, (1): -.

    15. [15]

      Xiao-yu WUZhong DU . Collisions Between Lumps/Rogue Waves and Solitons for A (3+1)-Dimensional Generalized Variable-Coefficient Shallow Water Wave Equation. China Ocean Engineering, 2022, 36(5): 808-813. doi: 10.1007/s13344-022-0072-1

    16. [16]

      . A Finite Element Method for Cracked Components of Structures. China Ocean Engineering, 2003, (2): -.

    17. [17]

      . Nonlinear Finite Element Analysis of Ocean Cables. China Ocean Engineering, 2004, (4): -.

    18. [18]

      袁 梦范 菊缪国平朱仁传黄祥鹿 . Studies on Mooring Energy Based on Finite Element Method. China Ocean Engineering, 2010, (4): 709-724.

    19. [19]

      肖 鹏杨坤德雷 波 . Model of Shipping Noise in the Deep Water: Directional Density and Spatial Coherence Functions. China Ocean Engineering, 2016, (4): 591-601.

    20. [20]

      Yan-li HEYu-xiang MAXiao-zhou MAGuo-hai DONG . Experimental Investigation on the Extreme Waves Induced by Single Wave Packets in Finite Water Depth. China Ocean Engineering, 2018, 32(4): 375-387. doi: 10.1007/s13344-018-0040-y

Metrics
  • PDF Downloads(0)
  • Abstract views(2520)
  • HTML views(2112)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

水利部交通运输部国家能源局南京水利科学研究院 《中国海洋工程》编辑部 版权所有

Address: 34 Hujuguan, Nanjing 210024, China Pos: 210024 Tel: 025-85829388 E-mail: coe@nhri.cn

Support by Beijing Renhe Information Technology Co. Ltd E-mail: info@rhhz.net

苏ICP备05007122号-5

/

DownLoad:  Full-Size Img  PowerPoint
Return