ISSN  0890-5487 CN 32-1441/P

Citation: Yue-min YU and Xiao-hua HUANG. Numerical Investigation on the Harbour Resonance Inside A Harbour with Lateral Cavities[J]. China Ocean Engineering, 2024, 38(5): 838-844. doi: 10.1007/s13344-024-0065-3 shu

Numerical Investigation on the Harbour Resonance Inside A Harbour with Lateral Cavities

  • Corresponding author: Yue-min YU, yuyuemin@aliyun.com
  • Received Date: 2023-12-24
    Accepted Date: 2024-04-23
    Available Online: 2024-10-22

  • Wave-induced harbour resonance is numerically investigated inside a harbour with lateral cavities. The theoretical solutions for the amplification parameter are compared with the simulated results under varying dimensionless wave numbers in order to verify the simulation model in a rectangular harbour at a constant depth. The results indicate that the numerical model can correctly calculate the natural frequency and the natural wave height. A range of calculations are performed for harbour resonance with one pair of lateral cavities, two pairs of lateral cavities and three pairs of lateral cavities, respectively. The simulated results indicate that the amplitude of the amplification parameter decreases both at the primary natural oscillation and the secondary natural oscillation, as the number of lateral cavities increases. The dimensionless wave number reduces as the number of lateral cavities increases both at the primary natural oscillation and the secondary natural oscillation as well.
  • 加载中
    1. [1]

      Engelen, L., Perrot-Minot, C., Mignot, E., Rivière, N. and De Mulder, T., 2020. Experimental study of bidirectional seiching in an open-channel, lateral cavity in the time and frequency domain, Physical Review Fluids, 5(10), 104801. doi: 10.1103/PhysRevFluids.5.104801

    2. [2]

      Gao, J.L., Ma, X.Z., Dong, G.H., Chen, H.Z., Liu, Q. and Zang, J., 2021. Investigation on the effects of Bragg reflection on harbor oscillations, Coastal Engineering, 170, 103977. doi: 10.1016/j.coastaleng.2021.103977

    3. [3]

      Gao, J.L., Ma, X.Z., Dong, G.H., Zang, J., Zhou, X.J. and Zhou, L., 2019. Topographic influences on transient harbor oscillations excited by N-waves, Ocean Engineering, 192, 106548. doi: 10.1016/j.oceaneng.2019.106548

    4. [4]

      Juez, C. and Navas-Montilla, A., 2022. Numerical characterization of Seiche waves energy potential in river bank lateral embayments, Renewable Energy, 186, 143–156. doi: 10.1016/j.renene.2021.12.125

    5. [5]

      Kimura, I. and Hosoda, T., 1997. Fundamental properties of flows in open channels with dead zone, Journal of Hydraulic Engineering, 123(2), 98–107. doi: 10.1061/(ASCE)0733-9429(1997)123:2(98)

    6. [6]

      Lam, D.C.L. and Simpson, R.B., 1976. Centered differencing and the box scheme for diffusion convection problems, Journal of Computational Physics, 22(4), 486–500.

    7. [7]

      Ma, X.Z., Zheng, Z.J., Gao, J.L., Wu, H.Q., Dong, Y.J. and Dong, G.H., 2021. Experimental investigation of transient harbor resonance induced by solitary waves, Ocean Engineering, 230, 109044. doi: 10.1016/j.oceaneng.2021.109044

    8. [8]

      Mei, C.C., Stiassnie, M. and Yue, D.K.P., 2005. Theory and Applications of Ocean Surface Waves, World Scientific, Singapore.

    9. [9]

      Meile, T., Boillat, J.L. and Schleiss, A.J., 2011. Water-Surface oscillations in channels with axi-symmetric cavities, Journal of Hydraulic Research, 49(1), 73–81. doi: 10.1080/00221686.2010.534671

    10. [10]

      Navas-Montilla, A., Juez, C., Franca, M.J. and Murillo, J., 2019. Depth-Averaged unsteady RANS simulation of resonant shallow flows in lateral cavities using augmented WENO-ADER schemes, Journal of Computational Physics, 395, 511–536. doi: 10.1016/j.jcp.2019.06.037

    11. [11]

      Navas-Montilla, A., Martínez-Aranda, S., Lozano, A., García-Palacín, I. and García-Navarro, P., 2021. 2D experiments and numerical simulation of the oscillatory shallow flow in an open channel lateral cavity, Advances in Water Resources, 148, 103836. doi: 10.1016/j.advwatres.2020.103836

    12. [12]

      Perrot-Minot, C., Engelen, L., Riviere, N., Lopez, D., De Mulder, T. and Mignot, E., 2020. Seiches in lateral cavities with simplified planform geometry: Oscillation modes and synchronization with the vortex shedding, Physics of Fluids, 32(8), 085103. doi: 10.1063/5.0016118

    13. [13]

      Rijnsdorp, D.P., Wolgamot, H. and Zijlema, M., 2022. Non-hydrostatic modelling of the wave-induced response of moored floating structures in coastal waters, Coastal Engineering, 177, 104195. doi: 10.1016/j.coastaleng.2022.104195

    14. [14]

      Stelling, G. and Zijlema, M., 2003. An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation, International Journal for Numerical Methods in Fluids, 43(1), 1–23. doi: 10.1002/fld.595

    15. [15]

      Tuna, B.A., Tinar, E. and Rockwell, D., 2013. Shallow flow past a cavity: globally coupled oscillations as a function of depth, Experiments in Fluids, 54(8), 1586. doi: 10.1007/s00348-013-1586-3

    16. [16]

      Wang, G., Dong, G.H., Perlin, M., Ma, X.Z, and Ma, Y.X., 2011. An analytic investigation of oscillations within a harbor of constant slope, Ocean Engineering, 38(2-3), 479–486. doi: 10.1016/j.oceaneng.2010.11.021

    17. [17]

      Wang, G., Zheng, J.H., Liang, Q.H., Zhang, W. and Huang, C., 2015. Theoretical analysis of harbor resonance in harbor with an exponential bottom profile, China Ocean Engineering, 29(6), 821–834.

    18. [18]

      Wang, Y.H., Jing, D.P. and Li, Y.L., 2022. Numerical research of harbor oscillation influenced by vegetation, Ocean Engineering, 244, 110255. doi: 10.1016/j.oceaneng.2021.110255

    19. [19]

      Yu, Y.M., Ma, N., Fan, S.M. and Gu, X.C., 2017. Experimental and numerical studies on sloshing in a membrane-type LNG tank with two floating plates, Ocean Engineering, 129, 217–227. doi: 10.1016/j.oceaneng.2016.11.029

    20. [20]

      Zijlema, M., Stelling, G. and Smit, P., 2011. SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters, Coastal Engineering, 58(10), 992–1012. doi: 10.1016/j.coastaleng.2011.05.015

  • 加载中
    1. [1]

      HU Zhi-qiangZHANG Dong-weiZHAO Dong-yaCHEN Gang . Structural Safety Assessment for FLNG-LNGC System During Offloading Operation Scenario. China Ocean Engineering, 2017, (2): 192-201. doi: 10.1007/s13344-017-0023-4

    2. [2]

      LIU FangWANG Yan-huiWU Zhi-liangWANG Shu-xin . Motion Analysis and Trials of the Deep Sea Hybrid Underwater Glider Petrel-II. China Ocean Engineering, 2017, (1): 55-62. doi: 10.1007/s13344-017-0007-4

    3. [3]

      Shan-ju ZHANGLiang-sheng ZHUKai ZOU . A Comparative Study of Numerical Models for Wave Propagation and Setup on Steep Coral Reefs. China Ocean Engineering, 2019, 33(4): 424-435. doi: 10.1007/s13344-019-0040-6

    4. [4]

      Yan-rong KUAIJi-fu ZHOUJin-long DUANXu WANG . Numerical Simulation of Solitary Wave Forces on A Vertical Cylinder on A Slope Beach. China Ocean Engineering, 2021, 35(3): 317-331. doi: 10.1007/s13344-021-0030-3

    5. [5]

      Ping WANGNing-chuan ZHANGShuai YUANWei-bin CHEN . Numerical Simulation of the Three-Dimensional Wave-Induced Currents on Unstructured Grid. China Ocean Engineering, 2017, 31(5): 539-548. doi: 10.1007/s13344-017-0062-x

    6. [6]

      Chun-yu GUOZuo-tian ZHANGTai-ping TIANXia-yan LIDa-gang ZHAO . Numerical Simulation on the Resistance Performance of Ice-Going Container Ship Under Brash Ice Conditions. China Ocean Engineering, 2018, 32(5): 546-556. doi: 10.1007/s13344-018-0057-2

    7. [7]

      Hui-qing CAOXu BAIXian-dong MAQun YINXiang-yu YANG . Numerical Simulation of Icing on Nrel 5-MW Reference Offshore Wind Turbine Blades Under Different Icing Conditions. China Ocean Engineering, 2022, 36(5): 767-780. doi: 10.1007/s13344-022-0068-x

    8. [8]

      Zhuang KANGWen-chi NIXu ZHANGLi-ping SUN . Two Improvements on Numerical Simulation of 2-DOF Vortex-Induced Vibration with Low Mass Ratio. China Ocean Engineering, 2017, 31(6): 764-772. doi: 10.1007/s13344-017-0087-1

    9. [9]

      MAJIDIAN HamedAZARSINA Farhood . Aerodynamic Simulation of A Containership to Evaluate Cargo Configuration Effect on Frontal Wind Loads. China Ocean Engineering, 2018, 32(2): 196-205. doi: 10.1007/s13344-018-0021-1

    10. [10]

      Song GAOLong-bin TAOYu-feng KOUChao LUJiang-long SUN . Numerical and Experimental Study on Hydrodynamic Performance of A Novel Semi-Submersible Concept. China Ocean Engineering, 2018, 32(2): 144-156. doi: 10.1007/s13344-018-0016-y

    11. [11]

      Lei LIUXin LIXin-liang TIANXian-tao ZHANGLi-xin XUXiu-zhan ZHANG . Numerical Investigation on Inclined Hydraulic Transport of Large Particles for Deepsea Mining. China Ocean Engineering, 2023, 37(3): 420-432. doi: 10.1007/s13344-023-0035-1

    12. [12]

      Ming-xin LIZhi-ming YUANXu BAIYong-zheng LIYong CHENGLong-bin TAO . Numerical Modelling of Wash Waves Generated by Ships Moving over An Uneven Bottom. China Ocean Engineering, 2023, 37(1): 145-153. doi: 10.1007/s13344-023-0012-8

    13. [13]

      Rui-rui ZHANGKe CHENYun-xiang YOU . Experimental, Numerical and Simplified Theoretical Model Study for Internal Solitary Wave Load on FPSO with Emphasis on Scale Effect. China Ocean Engineering, 2019, 33(1): 26-33. doi: 10.1007/s13344-019-0003-y

    14. [14]

      Jian ZHANGYun YOUZhi YAOFa-li HUO . Sensitivity Analysis of the Effect of Speed and Inclination Angle on Water-Entry Slamming Pressure of the Bow. China Ocean Engineering, 2020, 34(3): 432-440. doi: 10.1007/s13344-020-0039-z

    15. [15]

      Xuan-ming DINGWei-ting DENGYu PENGHang ZHOUChun-yan WANG . Bearing Behavior of Cast-in-Place Expansive Concrete Pile in Coral Sand Under Vertical Loading. China Ocean Engineering, 2021, 35(3): 352-360. doi: 10.1007/s13344-021-0038-8

    16. [16]

      Zhao-jun WANGTi-ti SUIChi ZHANGJun-ning PAN . Effect of Wave Nonlinearity on the Instantaneous Seabed Liquefaction. China Ocean Engineering, 2024, 38(1): 93-103. doi: 10.1007/s13344-024-0008-z

    17. [17]

      De-min LIXiao-chen DONGYan-ni LIHe-ao HUANGHong-da SHI . Hydrodynamic Performance and Power Absorption of A Coaxial Double-Buoy Wave Energy Converter. China Ocean Engineering, 2023, 37(3): 378-392. doi: 10.1007/s13344-023-0032-4

    18. [18]

      Lim W.Z.,Xiao R.Y., . Fluid−Structure Interaction Analysis of Flexible Plate with Partitioned Coupling Method. China Ocean Engineering, 2019, 33(6): 713-722. doi: 10.1007/s13344-019-0069-6

    19. [19]

      Wen-dong NIUShu-xin WANGYan-hui WANGYang SONGYa-qiang ZHU . Stability Analysis of Hybrid-Driven Underwater Glider. China Ocean Engineering, 2017, 31(5): 528-538. doi: 10.1007/s13344-017-0061-y

    20. [20]

      ASRARI SaharHAKIMZADEH HabibKARDAN Nazila . Investigation on the Local Scour Beneath Piggyback Pipelines Under Clear-Water Conditions. China Ocean Engineering, 2021, 35(3): 422-431. doi: 10.1007/s13344-021-0039-7

Metrics
  • PDF Downloads(0)
  • Abstract views(2529)
  • HTML views(2170)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

水利部交通运输部国家能源局南京水利科学研究院 《中国海洋工程》编辑部 版权所有

Address: 34 Hujuguan, Nanjing 210024, China Pos: 210024 Tel: 025-85829388 E-mail: coe@nhri.cn

Support by Beijing Renhe Information Technology Co. Ltd E-mail: info@rhhz.net

苏ICP备05007122号-5

/

DownLoad:  Full-Size Img  PowerPoint
Return