ISSN  0890-5487 CN 32-1441/P

Citation: Ze-peng ZHENG, Shu-qing WANG, Xi-chen WANG and Wen YUE. Compression Properties and Energy Absorption of A Novel Double Curved Beam Negative Stiffness Honeycomb Structures[J]. China Ocean Engineering, 2024, 38(5): 821-837. doi: 10.1007/s13344-024-0064-4 shu

Compression Properties and Energy Absorption of A Novel Double Curved Beam Negative Stiffness Honeycomb Structures

  • Corresponding author: Shu-qing WANG, shuqing@ouc.edu.cn
  • Received Date: 2023-12-22
    Accepted Date: 2024-05-28
    Available Online: 2024-10-22

Figures(39) / Tables(4)

  • This paper presents the design of a novel honeycomb structure with a double curved beam. The purpose of this design is to achieve vibration isolation for the main engine of an offshore platform and reduce impact loads. An analytical formula for the force-displacement relationship of the honeycomb single-cell structure is presented based on the modal superposition method. This formula provides a theoretical basis for predicting the compression performance of honeycomb structures. The effects of structural geometric parameters, series and parallel connection methods on the mechanical and energy absorption properties are investigated through mathematical modeling and experimental methods. Furthermore, the study focuses on the vibration isolation and impact resistance performance of honeycomb panels. The results show that the designed honeycomb structure has good mechanical and energy absorption performance, and its energy absorption effect is related to the geometric parameters and series and parallel connection methods of the structure. The isolation efficiency of the honeycomb with 4 rows and 3 columns reaches 38%. The initial isolation frequency of the isolator is 11.7 Hz.
  • 加载中
    1. [1]

      Brennan-Craddock, J., Brackett, D., Wildman, R. and Hague, R., 2012. The design of impact absorbing structures for additive manufacture, Journal of Physics: Conference Series, 382, 012042. doi: 10.1088/1742-6596/382/1/012042

    2. [2]

      Correa, D.M., Klatt, T., Cortes, S., Haberman, M., Kovar, D. and Seepersad, C., 2015. Negative stiffness honeycombs for recoverable shock isolation, Rapid Prototyping Journal, 21(2), 193–200. doi: 10.1108/RPJ-12-2014-0182

    3. [3]

      Dai, F.H., Li, H. and Du, S.Y., 2013. A multi-stable lattice structure and its snap-through behavior among multiple states, Composite Structures, 97, 56–63. doi: 10.1016/j.compstruct.2012.10.016

    4. [4]

      Darwish, Y. and ElGawady, M., 2019. Analysis of metamaterial bi-stable elements as energy dissipation systems, Bridge Structures, 15(4), 151–159. doi: 10.3233/BRS-190161

    5. [5]

      Debeau, D.A., Seepersad, C.C. and Haberman, M.R., 2018. Impact behavior of negative stiffness honeycomb materials, Journal of Materials Research, 33(3), 290–299. doi: 10.1557/jmr.2018.7

    6. [6]

      Guo, T.D. and Rega, G., 2022. Nonlinear mode localization in boundary-interior coupled structures by an asymptotic approach, International Journal of Non-Linear Mechanics, 141, 103929. doi: 10.1016/j.ijnonlinmec.2022.103929

    7. [7]

      Ha, C.S., Lakes, R.S. and Plesha, M.E., 2018. Design, fabrication, and analysis of lattice exhibiting energy absorption via snap-through behavior, Materials & Design, 141, 426–437.

    8. [8]

      Habib, F.N., Iovenitti, P., Masood, S.H. and Nikzad, M., 2017. In-plane energy absorption evaluation of 3D printed polymeric honeycombs, Virtual and Physical Prototyping, 12(2), 117–131. doi: 10.1080/17452759.2017.1291354

    9. [9]

      Habib, F.N., Iovenitti, P., Masood, S.H. and Nikzad, M., 2018. Cell geometry effect on in-plane energy absorption of periodic honeycomb structures, The International Journal of Advanced Manufacturing Technology, 94(5-8), 2369–2380. doi: 10.1007/s00170-017-1037-z

    10. [10]

      Hu, L.L. and Jiang, L., 2014. Mechanism of cell configuration affecting dynamic mechanical properties of metal honeycombs, Explosion and Shock Waves, 34(1), 41–46. (in Chinese)

    11. [11]

      Hu, L.L., You, F.F. and Yu, T.X., 2013. Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs, Materials & Design (1980–2015), 46, 511–523.

    12. [12]

      Ji, X.G., Zhang, J.A., Luan, Y.H., Zhang, X.X. and Hu, H.T., 2021. Research on compression energy absorption performance of skin-like 3D porous lattice structure, Journal of Mechanical Engineering, 57(15), 222–230. (in Chinese)

    13. [13]

      Li, Z.J., Yang, Q.S., Fang, R., Chen, W.S. and Hao, H., 2021. Crushing performances of Kirigami modified honeycomb structure in three axial directions, Thin-Walled Structures, 160, 107365. doi: 10.1016/j.tws.2020.107365

    14. [14]

      Mehreganian, N., Fallah, A.S. and Sareh, P., 2021. Structural mechanics of negative stiffness honeycomb metamaterials, Journal of Applied Mechanics, 88(5), 051006. doi: 10.1115/1.4049954

    15. [15]

      Peng, X.L. and Bargmann, S., 2021. A novel hybrid-honeycomb structure: enhanced stiffness, tunable auxeticity and negative thermal expansion, International Journal of Mechanical Sciences, 190, 106021. doi: 10.1016/j.ijmecsci.2020.106021

    16. [16]

      Ren, C.H. and Yang, D.Q., 2018. Characteristics of a novel multilayer negative stiffness shock isolation system for a marine structure, Journal of Vibration and Shock, 37(20), 81–87. (in Chinese)

    17. [17]

      Ren, C.H., Yang, D.Q. and Li, Q., 2019 Impact resistance performance and optimal design of a sandwich beam with a negative stiffness core, Journal of Mechanical Science and Technology, 33(7), 3147–3159.

    18. [18]

      Restrepo, D., Mankame, N.D. and Zavattieri, P.D., 2015. Phase transforming cellular materials, Extreme Mechanics Letters, 4, 52–60. doi: 10.1016/j.eml.2015.08.001

    19. [19]

      Song, Z.W., Sun, Z. and Zhu, Y.C., 2024. Vibration analysis of beam with complex cross-section based on asymptotic analysis method, Chinese Journal of Theoretical and Applied Mechanics, 56(2), 494–505. (in Chinese)

    20. [20]

      Tan, X.J., Chen, S., Wang, B., Zhu, S.W., Wu, L.Z. and Sun, Y.G., 2019. Design, fabrication, and characterization of multistable mechanical metamaterials for trapping energy, Extreme Mechanics Letters, 28, 8–21. doi: 10.1016/j.eml.2019.02.002

    21. [21]

      Wu, H.X., Liu, Y., Zhang, X.C., Yang, S. and Sun, Q.S., 2021. Effects of distribution of microstructure types on the in-plane dynamic crushing of composite honeycomb structures, Journal of Materials Engineering and Performance, 30(2), 850–861. doi: 10.1007/s11665-020-05369-6

    22. [22]

      Yang, J.M., Tang, Y., Gu, H., Liu, Y.G., Huang, D.Z. and Chen, J.S., 2018. Research and application of 3D printed porous geometric structure: a review, Materials Reports, 32(15), 2672–2683. (in Chinese)

    23. [23]

      Zhang, X.W. and Yang, D.Q., 2015. A novel marine impact resistance and vibration isolation cellular base, Journal of Vibration and Shock, 34(10), 40–45. (in Chinese)

    24. [24]

      Zhao, X., Sun, Z., Zhu, Y.C. and Yang, C.Q., 2022. Revisiting Kirchhoff–Love plate theories for thin laminated configurations and the role of transverse loads, Journal of Composite Materials, 56(9), 1363–1377. doi: 10.1177/00219983211073853

  • 加载中
    1. [1]

      De-min LIXiao-chen DONGYan-ni LIHe-ao HUANGHong-da SHI . Hydrodynamic Performance and Power Absorption of A Coaxial Double-Buoy Wave Energy Converter. China Ocean Engineering, 2023, 37(3): 378-392. doi: 10.1007/s13344-023-0032-4

    2. [2]

      Bai-cheng LYUWen-hua WUWei-an YAOYu DU . Lateral Vibration Behavior Analysis and TLD Vibration Absorption Design of the Soft Yoke Single-Point Mooring System. China Ocean Engineering, 2017, 31(3): 284-290. doi: 10.1007/s13344-017-0033-2

    3. [3]

      . Flow-Induced Vibration of A Nonlinearly Restrained Curved Pipe Conveying Fluid. China Ocean Engineering, 2004, (3): -.

    4. [4]

      Shao-hui YANGYong-qing WANGHong-zhou HEJun ZHANGHu CHEN . Dynamic Properties and Energy Conversion Efficiency of A Floating Multi-Body Wave Energy Converter. China Ocean Engineering, 2018, 32(3): 347-357. doi: 10.1007/s13344-018-0036-7

    5. [5]

      . Vibration and Acoustic Radiation from Submerged Spherical Double-Shell. China Ocean Engineering, 2003, (3): -.

    6. [6]

      De-min LIXiao-chen DONGHong-da SHIYan-ni LI . Theoretical and Experimental Study of A Coaxial Double-Buoy Wave Energy Converter. China Ocean Engineering, 2021, 35(3): 454-464. doi: 10.1007/s13344-021-0042-z

    7. [7]

      Xiao-chen DONGZhen GAODe-min LIShu-ting HUANGHong-da SHI . Power Absorption of A Two-Body Heaving Wave Energy Converter Considering Different Control and Power Take-off Systems. China Ocean Engineering, 2022, 36(1): 15-27. doi: 10.1007/s13344-022-0001-3

    8. [8]

      Hong-jun ZHUPeng-zhi LIN . Numerical Simulation of the Vortex-Induced Vibration of A Curved Flexible Riser in Shear Flow. China Ocean Engineering, 2018, 32(3): 301-311. doi: 10.1007/s13344-018-0031-z

    9. [9]

      Xiang-rui ZHANGKun-peng WANGDa-peng JIANGKai TANGYu-long LI . Dynamic Properties of Steel Catenary Riser near Touchdown Point Under Coplanar Vessel Heave and Vortex Induced Vibration. China Ocean Engineering, 2023, 37(2): 288-298. doi: 10.1007/s13344-023-0024-4

    10. [10]

      Xu BAIMeng SUNChuan-yu HANHai SUN . Prediction Model of Kinetic Energy Conversion of Tandem Dual-Oscillator Based on Flow-Induced Vibration Experiment. China Ocean Engineering, 2022, 36(5): 707-719. doi: 10.1007/s13344-022-0063-2

    11. [11]

      . Active Absorption Wave Maker System for Irregular Waves. China Ocean Engineering, 2003, (2): -.

    12. [12]

      任 冰李雪临王永学 . An Irregular Wave Maker of Active Absorption with VOF Method. China Ocean Engineering, 2008, (4): 623-634.

    13. [13]

      . A Numerical Wave Tank for Nonlinear Waves with Passive Absorption. China Ocean Engineering, 2001, (2): -.

    14. [14]

      . Strength of Lightweight Concrete Under Triaxial Compression. China Ocean Engineering, 1996, (2): -.

    15. [15]

      王立成 . Analytical Methods for Prediction of Water Absorption in Cement-Based Material?. China Ocean Engineering, 2009, (4): 719-728.

    16. [16]

      . Fatigue Behavior of Plain Concrete Under Biaxial Compression: Experiments and Theoretical Model. China Ocean Engineering, 2003, (4): -.

    17. [17]

      . Effect of Sample Disturbance on Unconfined Compression Strength of Natural Marine Clays. China Ocean Engineering, 2003, (3): -.

    18. [18]

      卞 夏钱 森丁建文 . Modeling Virgin Compression of Reconstituted Clay at Different Initial Water Contents. China Ocean Engineering, 2015, (5): 745-755.

    19. [19]

      陈达王娜侯利军廖迎娣 . Effect of Desiccation of Marine Environment on Beam Structure. China Ocean Engineering, 2013, (1): 65-72.

    20. [20]

      . The Statistical Relation of Shear Velocity with Soil Properties. China Ocean Engineering, 1998, (1): -.

Metrics
  • PDF Downloads(15)
  • Abstract views(3416)
  • HTML views(2602)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

水利部交通运输部国家能源局南京水利科学研究院 《中国海洋工程》编辑部 版权所有

Address: 34 Hujuguan, Nanjing 210024, China Pos: 210024 Tel: 025-85829388 E-mail: coe@nhri.cn

Support by Beijing Renhe Information Technology Co. Ltd E-mail: info@rhhz.net

苏ICP备05007122号-5

/

DownLoad:  Full-Size Img  PowerPoint
Return