ISSN  0890-5487 CN 32-1441/P

Citation: Qian LIU, Jian CUI, Huan MEI, Jun-liang GAO, Xiang-bai WU, Dai-yu ZHANG, Rui-rui ZHANG and Xiao-dong SHANG. Study on the Load Characteristics of Submerged Body Under Internal Solitary Waves on the Continental Shelf and Slope[J]. China Ocean Engineering, 2024, 38(5): 809-820. doi: 10.1007/s13344-024-0063-5 shu

Study on the Load Characteristics of Submerged Body Under Internal Solitary Waves on the Continental Shelf and Slope

  • Corresponding author: Qian LIU, liuqian@just.edu.cn
  • Received Date: 2023-12-07
    Accepted Date: 2024-04-14
    Available Online: 2024-10-22

  • Based on the high-quality observation data and the numerical simulation, the evolution characteristics of internal solitary waves (ISWs) and the load on the suspend submerged body are studied on the continental shelf and slope separately. The observed ISWs exhibit the first mode depression ISWs. The amplitudes of ISWs on the shelf and slope areas reach 50 m and 80 m, respectively. The upper layer velocity in the westward direction is about 0.8 m/s on the continental shelf and 0.9 m/s on the continental slope during the passing through of ISWs. The lower layer is dominated by the eastward compensating flow. In the vertical direction, the water in front of the wave flows downward, while the water behind the wave flows upward, and the maximum vertical velocity exceeds 0.2 m/s. Numerical simulation results show that the larger the amplitude of ISWs, the larger the load on the submerged body. The force on the submerged body by ISWs is dominated by the vertical force, and the corresponding maximum vertical forces on the continental shelf and slope are −25 kN and −27 kN. The submerged body is subjected to a large counterclockwise moment and the sudden change of the moment will also cause the submerged body to capsize. This paper not only gives a deeper understanding of the characteristics of ISWs from the deep continental slope to the shallow continental shelf, but also has a certain guiding value for the prediction of ISWs and for marine military activities.
  • 加载中
    1. [1]

      Ai, C.F., Ma, Y.X., Yuan, C.F. and Dong, G.H., 2021. Non-hydrostatic model for internal wave generations and propagations using immersed boundary method, Ocean Engineering, 225, 108801. doi: 10.1016/j.oceaneng.2021.108801

    2. [2]

      Ai, C.F., Ma, Y.X., Yuan, C.F., Xie, Z.H., Dong, G.H. and Stoesser, T., 2022. An efficient 3D non-hydrostatic model for predicting nonlinear wave interactions with fixed floating structures, Ocean Engineering, 248, 110810. doi: 10.1016/j.oceaneng.2022.110810

    3. [3]

      Alford, M.H., Peacock, T., MacKinnon, J.A., Nash, J.D., Buijsman, M.C., Centurioni, L.R., Chao, S.Y., Chang, M.H., Farmer, D.M., Fringer, O.B., Fu, K.H., Gallacher, P.C., Graber, H.C., Helfrich, K.R., Jachec, S.M., Jackson, C.R., Klymak, J.M., Ko, D.S., Jan, S., Shaun Johnston, T.M., Legg, S., Lee, I.H., Lien, R.C., Mercier, M.J., Moum, J.N., Musgrave, R., Park, J.H., Pickering, A.I., Pinkel, R., Rainville, L., Ramp, S.R., Rudnick, D.L., Sarkar, S., Scotti, A., Simmons, H.L., St Laurent, L.C., Venayagamoorthy, S.K., Wang, Y.H., Wang, J., Yang, Y.J., Paluszkiewicz, T. and Tang, T.Y., 2015. The formation and fate of internal waves in the South China Sea, Nature, 521(7550), 65–69. doi: 10.1038/nature14399

    4. [4]

      Cai, S.Q., Wu, Y.Q., Xu, J.X., Chen, Z.W., Xie, J.S. and He, Y.H., 2021. On the generation and propagation of internal solitary waves in the southern Andaman Sea: A numerical study, Science China Earth Sciences, 64(10), 1674–1686. doi: 10.1007/s11430-020-9802-8

    5. [5]

      Chen, J., You., Y.X., Liu, X.D. and Wu, C.S., 2010. Numerical simulation of interaction of internal solitary waves with a moving submarine, Chinese Journal of Hydrodynamics, 25(3), 344–351. (in Chinese)

    6. [6]

      Chen, M., Chen, K. and You, Y.X., 2017. Experimental investigation of internal solitary wave forces on a semi-submersible, Ocean Engineering, 141, 205–214. doi: 10.1016/j.oceaneng.2017.06.027

    7. [7]

      Ding, W.Y., Ai, C.F., Jin, S. and Lin, J.B., 2020. 3D numerical investigation of forces and flow field around the semi-submersible platform in an internal solitary wave, Water, 12(1), 208. doi: 10.3390/w12010208

    8. [8]

      Dong, D., Yang, X.F., Li, X.F. and Li, Z.W., 2016. SAR observation of eddy-induced mode-2 internal solitary waves in the South China Sea, IEEE Transactions on Geoscience and Remote Sensing, 54(11), 6674–6686. doi: 10.1109/TGRS.2016.2587752

    9. [9]

      Fu, K.H., Wang, Y.H., St. Laurent, L., Simmons, H. and Wang, D.P., 2012. Shoaling of large-amplitude nonlinear internal waves at Dongsha Atoll in the northern South China Sea, Continental Shelf Research, 37, 1–7. doi: 10.1016/j.csr.2012.01.010

    10. [10]

      Gao, J.L., Bi, W.J., Zhang, J. and Zang, J., 2023. Numerical investigations on harbor oscillations induced by falling objects, China Ocean Engineering, 37(3), 458–470. doi: 10.1007/s13344-023-0038-y

    11. [11]

      Gao, J.L., Chen, H.Z., Ma, X.Z., Dong, G.H., Zang, J. and Liu, Q., 2021a. Study on influences of fringing reef on harbor oscillations triggered by N-waves, China Ocean Engineering, 35(3), 398–409. doi: 10.1007/s13344-021-0036-x

    12. [12]

      Gao, J.L., He, Z.W., Huang, X.H., Liu, Q., Zang, J. and Wang, G., 2021b. Effects of free heave motion on wave resonance inside a narrow gap between two boxes under wave actions, Ocean Engineering, 224, 108753. doi: 10.1016/j.oceaneng.2021.108753

    13. [13]

      Gao, J.L., He, Z.W., Zang, J., Chen, Q., Ding, H.Y. and Wang, G., 2020. Numerical investigations of wave loads on fixed box in front of vertical wall with a narrow gap under wave actions, Ocean Engineering, 206, 107323. doi: 10.1016/j.oceaneng.2020.107323

    14. [14]

      Gao, J.L., Zhou, X.J., Zhou, L., Zang, J. and Chen, H.Z., 2019. Numerical investigation on effects of fringing reefs on low-frequency oscillations within a harbor, Ocean Engineering, 172, 86–95. doi: 10.1016/j.oceaneng.2018.11.048

    15. [15]

      Gao, J.L., Hou, L.H., Liu, Y.Y. and Shi, H.B., 2024. Influences of Bragg reflection on harbor resonance triggered by irregular wave groups, Ocean Engineering, 305, 117941. doi: 10.1016/j.oceaneng.2024.117941

    16. [16]

      Gong, Q.L., Chen, L., Diao, Y.N., Xiong, X.J., Sun, J.L. and Lv, X.Q., 2023. On the identification of internal solitary waves from moored observations in the northern South China Sea, Scientific Reports, 13(1), 3133. doi: 10.1038/s41598-023-28565-5

    17. [17]

      Gong, S.K., Gao, J.L., Song, Z.W., Shi, H.B and Liu, Y.Y., 2024. Hydrodynamics of fluid resonance in a narrow gap between two boxes with different breadths, Ocean Engineering, 311, 118986. doi: 10.1016/j.oceaneng.2024.118986

    18. [18]

      Guan, H., Wei, G. and Du, H., 2012. Hydrodynamic characterization of internal solitary wave interacting with submarines, Journal of PLA University of Technology (Natural Science Edition), 13(5), 577–582. (in Chinese)

    19. [19]

      Guo, Y.L., Meng, J., Xu, Y., Jia, C., Liu, J., Chen, X. and Yu, Y.J., 2021. Laboratory study on energy dissipation of internal solitary waves in guyots, Oceanologia et Limnologia Sinica, 52(4), 846–859. (in Chinese)

    20. [20]

      He, Z.W., Gao, J.L., Chen, H.Z., Zang, J., Liu, Q. and Wang, G., 2021a. Harmonic analyses of hydrodynamic characteristics for gap resonance between fixed box and vertical wall, China Ocean Engineering, 35(5), 712–723. doi: 10.1007/s13344-021-0063-7

    21. [21]

      He, Z.W., Gao, J.L., Zang, J., Chen, H.Z., Liu, Q. and Wang, G., 2021b. Effects of free heave motion on wave forces on two side-by-side boxes in close proximity under wave actions, China Ocean Engineering, 35(4), 490–503. doi: 10.1007/s13344-021-0045-9

    22. [22]

      Huang, X.D., Chen, Z.H., Zhao, W., Zhang, Z.W., Zhou, C., Yang, Q.X. and Tian, J.W., 2016. An extreme internal solitary wave event observed in the northern South China Sea, Scientific Reports, 6(1), 30041. doi: 10.1038/srep30041

    23. [23]

      Klymak, J.M. and Moum, J.N., 2003. Internal solitary waves of elevation advancing on a shoaling shelf, Geophysical Research Letters, 30(20), 2045.

    24. [24]

      Li, W. and Xie, X.H., 2023. Reflection and scattering of low-mode internal tides on the continental slope of the South China Sea, Journal of Physical Oceanography, 53(11), 2687–2699. doi: 10.1175/JPO-D-23-0087.1

    25. [25]

      Liu, Q., Shang, X.D. and Xie, X.H., 2021. Observations of semidiurnal M2 internal tidal parametric subharmonic instability in the northeastern South China Sea, Journal of Oceanology and Limnology, 39(1), 56–63. doi: 10.1007/s00343-019-9131-8

    26. [26]

      Liu, Q., Xie, X.H., Shang, X.D. and Chen, G.Y., 2016. Coherent and incoherent internal tides in the southern South China Sea, Chinese Journal of Oceanology and Limnology, 34(6), 1374–1382. doi: 10.1007/s00343-016-5171-5

    27. [27]

      Liu, Q., Xie, X.H., Shang, X.D., Chen, G.Y. and Wang, H., 2019. Modal structure and propagation of internal tides in the northeastern South China Sea, Acta Oceanologica Sinica, 38(9), 12–23. doi: 10.1007/s13131-019-1473-1

    28. [28]

      Song, H.B., Gong, Y., Yang, S.X. and Guan, Y.X., 2021. Observations of internal structure changes in shoaling internal solitary waves based on seismic oceanography method, Frontiers in Marine Science, 8, 733959. doi: 10.3389/fmars.2021.733959

    29. [29]

      Wang, C., Wang, J., Liu, Q., Zhao, S., Li, Z. Y., Kaidi, S., Hu, H.B., Chen, X.P. and Du, P., 2023. Dynamics and “falling deep” mechanism of submerged floating body under internal solitary waves, Ocean Engineering, 288, 116058. doi: 10.1016/j.oceaneng.2023.116058

    30. [30]

      Wang, S.D., Wei, G., Du, H., Wu, J.L. and Wang, X.L., 2020. Experimental investigation of the wave-flow structure of an oblique internal solitary wave and its force exerted on a slender body, Ocean Engineering, 201, 107057. doi: 10.1016/j.oceaneng.2020.107057

    31. [31]

      Wang, X., Zhou, J.F., Wang, Z. and You, Y.X., 2018. A numerical and experimental study of internal solitary wave loads on semi-submersible platforms, Ocean Engineering, 150, 298–308. doi: 10.1016/j.oceaneng.2017.12.042

    32. [32]

      Wei, G., Du, H. and Gu, M.M., 2015. Measurement and analysis of the kinematic properties of elongated submerged bodies under the action of internal solitary wave, Proceedings of the Chinese Mechanics Conference Abstract, 2015, 2011.

    33. [33]

      Xie, J.S., He, Y.H. and Cai, S.Q., 2019. Bumpy topographic effects on the transbasin evolution of large-amplitude internal solitary wave in the northern South China Sea, Journal of Geophysical Research: Oceans, 124(7), 4677–4695. doi: 10.1029/2018JC014837

    34. [34]

      Xie, J.S., He, Y.H., Lü, H.B., Chen, Z.W., Xu, J.X. and Cai, S.Q., 2016. Distortion and broadening of internal solitary wavefront in the northeastern South China Sea deep basin, Geophysical Research Letters, 43(14), 7617–7624. doi: 10.1002/2016GL070093

    35. [35]

      Xie, X.H. and Chen, D.K., 2021. Near-surface reflection and nonlinear effects of low-mode internal tides on a continental slope, Journal of Physical Oceanography, 51(4), 1037–1051. doi: 10.1175/JPO-D-20-0197.1

    36. [36]

      Xie, X.H., Liu, Q., Zhao, Z.X., Shang, X.D., Cai, S.Q., Wang, D.X. and Chen, D.K., 2018. Deep sea currents driven by breaking internal tides on the continental slope, Geophysical Research Letters, 45(12), 6160–6166. doi: 10.1029/2018GL078372

    37. [37]

      Zhang, R.R., Wang, H.W., Chen, K., You, Y.X., Zhang, S.G. and Xiong, X.H., 2022. Experimental investigation and prediction model of the loads exerted by oblique internal solitary waves on FPSO, China Ocean Engineering, 36(2), 179–190. doi: 10.1007/s13344-022-0017-8

    38. [38]

      Zhang, X.J., Huang, X.D., Zhang, Z.W., Zhou, C., Tian, J.W. and Zhao, W., 2018. Polarity variations of internal solitary waves over the continental shelf of the northern South China Sea: impacts of seasonal stratification, mesoscale eddies, and internal tides, Journal of Physical Oceanography, 48(6), 1349–1365. doi: 10.1175/JPO-D-17-0069.1

    39. [39]

      Zhao, Z.X., Klemas, V.V., Zheng, Q.A.N. and Yan, X.H., 2003. Satellite observation of internal solitary waves converting polarity, Geophysical Research Letters, 30(19), 1988.

    40. [40]

      Zheng, Q.N., Xie, L.L., Xiong, X.J., Hu, X. and Chen, L., 2020. Progress in research of submesoscale processes in the South China Sea, Acta Oceanologica Sinica, 39(1), 1–13. doi: 10.1007/s13131-019-1521-4

  • 加载中
    1. [1]

      Shuang LIUGuang-hua HEZhi-gang ZHANGChang-hong HUCheng ZHANGZheng-ke WANGHong-fei XIE . Multi-Parameter Influence Analysis of Interaction Between Internal Solitary Wave and Fixed Submerged Body. China Ocean Engineering, 2023, 37(6): 934-947. doi: 10.1007/s13344-023-0078-3

    2. [2]

      Hui-min PEIDong WANG . Shear Strength and Dilatancy of Calcareous Sand in the South China Sea. China Ocean Engineering, 2022, 36(5): 781-790. doi: 10.1007/s13344-022-0069-9

    3. [3]

      Xing-yu ZHANGXu-jian LYUXu-dong FAN . Numerical Study on the Vertical Water Exit of A Cylinder with Cavity. China Ocean Engineering, 2022, 36(5): 734-742. doi: 10.1007/s13344-022-0065-0

    4. [4]

      Ying CUIBeom-Soo HYUNKilwon KIM . Numerical Study on Air Turbines with Enhanced Techniques for OWC Wave Energy Conversion. China Ocean Engineering, 2017, 31(5): 517-527. doi: 10.1007/s13344-017-0060-z

    5. [5]

      Jia-ming WUYing XULong-bin TAOMiao YUYi-zhe DOU . An Integrated Hydrodynamics and Control Model of A Tethered Underwater Robot. China Ocean Engineering, 2018, 32(5): 557-569. doi: 10.1007/s13344-018-0058-1

    6. [6]

      Chun-yu GUOPei XUChao WANGZi KAN . Numerical and Experimental Study of Blockage Effect Correction Method in Towing Tank. China Ocean Engineering, 2019, 33(5): 522-536. doi: 10.1007/s13344-019-0050-4

    7. [7]

      Ben Belgacem I.Cheikh L.Barhoumi E. M.Khan W.Ben Salem W. . Numerical Analysis of the Behavior of A New Aeronautical Alloy (Ti555-03) Under the Effect of A High-Speed Water Jet. China Ocean Engineering, 2019, 33(1): 114-126. doi: 10.1007/s13344-019-0012-x

    8. [8]

      Zhong-fei CHENBin-zhen ZHOULiang ZHANGWan-chao ZHANGShu-qi WANGJun ZANG . Geometrical Evaluation on the Viscous Effect of Point-Absorber Wave-Energy Converters. China Ocean Engineering, 2018, 32(4): 443-452. doi: 10.1007/s13344-018-0046-5

    9. [9]

      SEZEN SavasCAKICI Ferdi . Numerical Prediction of Total Resistance Using Full Similarity Technique. China Ocean Engineering, 2019, 33(4): 493-502. doi: 10.1007/s13344-019-0047-z

    10. [10]

      DOGRUL AliYILDIZ Burak . Numerical Prediction of Form Factor and Wave Interference of A Trimaran for Different Outrigger Positions. China Ocean Engineering, 2022, 36(2): 279-288. doi: 10.1007/s13344-022-0024-9

    11. [11]

      MAYON RobertDe-zhi NINGChong-wei ZHANGJOHANNING Lars . Hydrodynamic Performance of A Porous-Type Land-Fixed Oscillating Water Column Wave Energy Converter. China Ocean Engineering, 2022, 36(1): 1-14. doi: 10.1007/s13344-022-0008-9

    12. [12]

      王 飞郭海燕李效民孟凡顺 . Experimental Study on Ocean Internal Wave Force on Vertical Cylinders in Different Depths. China Ocean Engineering, 2016, (3): 459-468.

    13. [13]

      王 科张 犀高 鑫 . Study on Scattering Wave Force of Horizontal and Vertical Plate Type Breakwaters. China Ocean Engineering, 2011, (4): 699-708.

    14. [14]

      . Characteristics of the Function of Ice Force on Vertical Cylindrical Piles. China Ocean Engineering, 2001, (3): -.

    15. [15]

      Yan-zhang XUWei-wen ZHAODe-cheng WAN . MPS Method for Interaction Between Solitary Waves and Submerged Horizontal Plate. China Ocean Engineering, 2020, 34(3): 314-327. doi: 10.1007/s13344-020-0029-1

    16. [16]

      Bi-jin LIUDan-juan FU . Calculating the Wave Force on Partially Immersed Large-Scale Horizontal Cylinders. China Ocean Engineering, 2021, 35(2): 291-300. doi: 10.1007/s13344-021-0026-z

    17. [17]

      邹望于开平R. E. A. Arndt张广 . Modeling and Simulation of Supercavity with Inertial Force in the Horizontal Curvilinear Motion. China Ocean Engineering, 2014, (1): 31-42.

    18. [18]

      Lotfollahi-Yaghin, M. A.Pourtaghi, A.Sanaaty, B.Lotfollahi-Yaghin, A. . Artificial Neural Network Ability in Evaluation of Random Wave-Induced Inline Force on A Vertical Cylinder. China Ocean Engineering, 2012, (1): 19-36.

    19. [19]

      Da-hai ZHANGLan DINGBin HUANGXue-meng CHENJin-tao LIU . Optimization Study on the Blade Profiles of A Horizontal Axis Tidal Turbine Based on BEM-CFD Model. China Ocean Engineering, 2019, 33(4): 436-445. doi: 10.1007/s13344-019-0041-5

    20. [20]

      杨嘉桢吴朝安张道华 . A Numerical Study on Water Waves Generated by a A Submerged Moving Body in a A Two-Llayer Fluid System. China Ocean Engineering, 2009, (3): 441-458.

Metrics
  • PDF Downloads(2)
  • Abstract views(2593)
  • HTML views(2178)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

水利部交通运输部国家能源局南京水利科学研究院 《中国海洋工程》编辑部 版权所有

Address: 34 Hujuguan, Nanjing 210024, China Pos: 210024 Tel: 025-85829388 E-mail: coe@nhri.cn

Support by Beijing Renhe Information Technology Co. Ltd E-mail: info@rhhz.net

苏ICP备05007122号-5

/

DownLoad:  Full-Size Img  PowerPoint
Return