ISSN  0890-5487 CN 32-1441/P

Citation: Pei-xin ZHOU and Hong-sheng ZHANG. Analytical Method for the Wave Diffraction of Asymmetrically Arranged Breakwaters[J]. China Ocean Engineering, 2024, 38(5): 797-808. doi: 10.1007/s13344-024-0062-6 shu

Analytical Method for the Wave Diffraction of Asymmetrically Arranged Breakwaters

  • Corresponding author: Hong-sheng ZHANG, hszhang@shmtu.edu.cn
  • Received Date: 2023-11-03
    Accepted Date: 2024-05-05
    Available Online: 2024-10-22

Figures(16) / Tables(9)

  • The layout forms of several breakwater structures can be generalized as asymmetrical arrangements in actual engineering. However, the problem of wave diffraction around asymmetrically arranged breakwaters has not been adequately investigated. In this study, we propose an analytical method of wave diffraction for regular waves passing through asymmetrically arranged breakwaters, and we use the Nyström method to obtain the analytical solution numerically. We compared the results of this method with those of previous analytical solutions and with numerical results to demonstrate the validity of our approach. We also provided diffraction coefficient diagrams of breakwaters with different layout forms. Moreover, we described the analytical expression for the problem of diffraction through long-wave incident breakwaters and presented an analysis of the relationship between the diffraction coefficients and the widths of breakwater gates. The analytical method presented in this study contributes to the limited literature on the theory of wave diffraction through asymmetrically arranged breakwaters.
  • 加载中
    1. [1]

      Gu, Q., 2012. Mathematical Methods for Physics, Science Press, Beijing. (in Chinese)

    2. [2]

      Han, X.Y., Dong, S. and Wang, Y.Z., 2021. Interaction between oblique waves and arc-shaped breakwater: wave action on the breakwater and wave transformation behind it, Ocean Engineering, 234, 109252. doi: 10.1016/j.oceaneng.2021.109252

    3. [3]

      Johnson, J.W., 1952. Generalized wave diffraction diagrams, Proceeding of the Second Conference on Coastal Engineering, Council on Wave Research, Berkeley, pp. 6−23.

    4. [4]

      Kirby, J.T., 1988. Parabolic wave computations in non-orthogonal coordinate systems, Journal of Waterway, Port, Coastal, and Ocean Engineering, 114(6), 673–685. doi: 10.1061/(ASCE)0733-950X(1988)114:6(673)

    5. [5]

      Liu, P.L.F. and Boissevain, P.L., 1988. Wave propagation between two breakwaters, Journal of Waterway, Port, Coastal, and Ocean Engineering, 114(2), 237–247. doi: 10.1061/(ASCE)0733-950X(1988)114:2(237)

    6. [6]

      Memos, C.D., 1980a. Water waves diffracted by two breakwaters, Journal of Hydraulic Research, 18(4), 343–357. doi: 10.1080/00221688009499540

    7. [7]

      Memos, C.D., 1980b. Energy transmission by surface waves through an opening, Journal of Fluid Mechanics, 97(3), 557–568. doi: 10.1017/S0022112080002698

    8. [8]

      Ministry of Transport of the People's Republic of China, 2013. Code of Hydrology for Sea Harbour, JTS 145-2-2013, China Communication Press, Beijing. (in Chinese)

    9. [9]

      Montefusco, L., 1968. The diffraction of a plane wave by an isolated breakwater, Meccanica, 3(3), 156–166. doi: 10.1007/BF02129248

    10. [10]

      Morse, P.M. and Rubenstein, P.J., 1938. The diffraction of waves by ribbons and by slits, Physical Review, 54(11), 895–898. doi: 10.1103/PhysRev.54.895

    11. [11]

      Penney, W.G. and Price, A.T., 1952. Part I. The diffraction theory of sea waves and the shelter afforded by breakwaters, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 244(882), 236–253.

    12. [12]

      Peters, A.S. and Stoker, J.J., 1954. A uniqueness theorem and a new solution for Sommerfeld's and other diffraction problems, Communications on Pure and Applied Mathematics, 7(3), 565–585. doi: 10.1002/cpa.3160070307

    13. [13]

      Pos, J.D., 1984. A Study of Breakwater Gap Wave Diffraction using Close Range Photogrammetry and Finite and Infinite Elements, Ph.D. Thesis, University of Cape Town, Cape Town.

    14. [14]

      Putnam, J.A. and Arthur, R.S., 1948. Diffraction of water waves by breakwaters, Eos, Transactions American Geophysical Union, 29(4), 481–490. doi: 10.1029/TR029i004p00481

    15. [15]

      Shi, F.Y., Kirby, J.T., Tehranirad, B., Harris, J.C., Choi, Y.K. and Malej, M., 2016. FUNWAVE-TVD Fully Nonlinear Boussinesq Wave Model with TVD Solver-Documentation and User ’s Manual (Version 3.0), Center for Applied Coastal Research, Newark.

    16. [16]

      Sobey, R.J. and Johnson, T.L., 1986. Diffraction patterns near narrow breakwater gaps, Journal of Waterway, Port, Coastal, and Ocean Engineering, 112(4), 512–528. doi: 10.1061/(ASCE)0733-950X(1986)112:4(512)

    17. [17]

      U.S. Army Corps of Engineers, 2002. Coastal Engineering Manual, University of Cape Town, Faculty of Engineering the Built Environment, Department of Civil Engineering.

    18. [18]

      Willmott, C.J., 1981. On the validation of models, Physical Geography, 2(2), 184–194. doi: 10.1080/02723646.1981.10642213

    19. [19]

      Zhai, Z.F., Hu, Q., Ye, W.F. and Huang, H., 2021. Analytical modelling of solitary wave diffraction from a V-shaped breakwater, Ocean Engineering, 230, 109014. doi: 10.1016/j.oceaneng.2021.109014

    20. [20]

      Zhang, H.S., Zhou, P.X. and Hong, G.W., 2022. Mathematical model of wave diffraction for symmetrically arranged breakwaters, Physics of Fluids, 34(6), 067102. doi: 10.1063/5.0093245

    21. [21]

      Zhang, H.S., Zhu, L.S. and You, Y.X., 2005. A numerical model for wave propagation in curvilinear coordinates, Coastal Engineering, 52(6), 513–533. doi: 10.1016/j.coastaleng.2005.02.004

  • 加载中
    1. [1]

      Sheng-chao JIANGZe-hang SHIChao SONGGui-yong ZHANGGuo-qiang TANG . A Fully Nonlinear HOBEM with the Domain Decomposition Method for Simulation of Wave Propagation and Diffraction. China Ocean Engineering, 2018, 32(6): 646-654. doi: 10.1007/s13344-018-0066-1

    2. [2]

      Nikpour A.H.Moghim M.N.Badri M.A. . Experimental Study of Wave Attenuation in Trapezoidal Floating Breakwaters. China Ocean Engineering, 2019, 33(1): 103-113. doi: 10.1007/s13344-019-0011-y

    3. [3]

      ÇELIKOĞLU YeşimENGIN Demet . Placement Effect on the Stability of Tetrapod Armor Unit on Breakwaters in Irregular Waves. China Ocean Engineering, 2017, 31(6): 747-753. doi: 10.1007/s13344-017-0085-3

    4. [4]

      San Sieu CUONGJen-Yi CHANGChia-Cheng TSAIWan-Rong CHOU . An Analytical Solution for Wave Transformation Over Axi-Symmetric Topography. China Ocean Engineering, 2019, 33(6): 694-703. doi: 10.1007/s13344-019-0067-8

    5. [5]

      Ming QUDing-yong YUZhi-hao DOUShi-lin WANG . Design and Experimental Study of A Pile-Based Breakwater Integrated with OWC Chamber. China Ocean Engineering, 2021, 35(3): 443-453. doi: 10.1007/s13344-021-0041-0

    6. [6]

      . Analytical Research on Wave Diffraction on Arc-Shaped Bottom-Mounted Perforated Breakwaters. China Ocean Engineering, 2007, (3): -.

    7. [7]

      . Wave Action on Structures of Combined Cylinders. China Ocean Engineering, 2005, (3): -.

    8. [8]

      . A Linear Theory for Wave Scattering by Double Slotted Barriers in Weak Steady Currents. China Ocean Engineering, 2008, (2): -.

    9. [9]

      . Wave Scattering by Double Slotted Barriers in A Steady Current: Experiments. China Ocean Engineering, 2008, (2): -.

    10. [10]

      段金辉程建生王建平王景全 . Wave Diffraction on Arc-Shaped Floating Perforated Breakwaters. China Ocean Engineering, 2012, (2): 305-316.

    11. [11]

      王冬姣邱守强叶家玮 . An Experimental Study on A Trapezoidal Pendulum Wave Energy Converter in Regular Waves. China Ocean Engineering, 2015, (4): 623-632.

    12. [12]

      Li-qin LIUYa-liu LIUWan-hai XUYan LIYou-gang TANG . A Semi-Analytical Method for the PDFs of A Ship Rolling in Random Oblique Waves. China Ocean Engineering, 2018, 32(1): 74-84. doi: 10.1007/s13344-018-0008-y

    13. [13]

      . A Probabilistic Method for Motion Analysis of Caisson Breakwaters. China Ocean Engineering, 2006, (1): -.

    14. [14]

      . Second-Order Wave Diffraction Around 3-D Bodies by A Time-Domain Method. China Ocean Engineering, 2001, (1): -.

    15. [15]

      张显涛杨建民肖龙飞 . An Oscillating Wave Energy Converter with Nonlinear Snap-Through Power-Take-Off Systems in Regular Waves. China Ocean Engineering, 2016, (4): 565-580.

    16. [16]

      朱大同 . Impedance Analytical Method of Wave Run-up and Reflection from A Slotted-Wall Caisson Breakwater. China Ocean Engineering, 2010, (3): 453-465.

    17. [17]

      . Numerical Simulation of Wave Interaction with Perforated Caisson Breakwaters. China Ocean Engineering, 2003, (1): -.

    18. [18]

      左其华李 鹏滕 玲王登婷 . Discussion on Wave Transmission Coefficient Formulae of Submerged Breakwaters. China Ocean Engineering, 2010, (1): 57-66.

    19. [19]

      刘 勇姚卓琳李华军 . Analytical and Experimental Studies on Hydrodynamic Performance of Semi-Immersed Jarlan-Type Perforated Breakwaters. China Ocean Engineering, 2015, (6): 793-806.

    20. [20]

      王禹迟王元战李青美陈良志 . Application of Importance Sampling Method in Sliding Failure Simulation of Caisson Breakwaters. China Ocean Engineering, 2016, (3): 469-482.

Metrics
  • PDF Downloads(15)
  • Abstract views(3777)
  • HTML views(2845)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

水利部交通运输部国家能源局南京水利科学研究院 《中国海洋工程》编辑部 版权所有

Address: 34 Hujuguan, Nanjing 210024, China Pos: 210024 Tel: 025-85829388 E-mail: coe@nhri.cn

Support by Beijing Renhe Information Technology Co. Ltd E-mail: info@rhhz.net

苏ICP备05007122号-5

/

DownLoad:  Full-Size Img  PowerPoint
Return