ISSN  0890-5487 CN 32-1441/P

Citation: Rui-rui ZHANG, Cui LI, Chun-rong PU, Qian LIU and Yun-xiang YOU. Loads and Dynamic Response Characteristic on FPSO Under Internal Solitary Waves[J]. China Ocean Engineering, 2024, 38(5): 785-796. doi: 10.1007/s13344-024-0061-7 shu

Loads and Dynamic Response Characteristic on FPSO Under Internal Solitary Waves

  • Corresponding author: Rui-rui ZHANG, zjcyzrr@sina.com
  • Received Date: 2023-09-15
    Accepted Date: 2024-02-26
    Available Online: 2024-10-22

Figures(14) / Tables(2)

  • According to the established prediction model of internal solitary wave loads on FPSO in the previous work, the lumped mass model and the movement equations of finite displacement in time domain, the dynamic response model of interaction between internal solitary waves and FPSO with mooring lines were established. Through calculations and analysis, time histories of dynamic loads of FPSO exerted by internal solitary waves, FPSO’s motion and dynamic tension of mooring line were obtained. The effects of the horizontal pretension of mooring line, the amplitude of internal solitary wave and layer fluid depth on dynamic response behavior of FPSO were mastered. It was shown that the internal solitary waves had significant influence on FPSO, such as the large magnitude horizontal drift and a sudden tension increment. With internal solitary wave of −170 m amplitude in the ocean with upper and lower layer fluid depth ratio being 60:550, the dynamic loads reached 991.132 kN (horizontal force), 18067.3 kN (vertical force) and −5042.92 kN·m (pitching moment). Maximum of FPSO’s horizontal drift was 117.56 m. Tension increment of upstream mooring line approached 401.48 kN and that of backflow mooring line was −140 kN. Moreover, the loads remained nearly constant with different pretension but increased obviously with the changing amplitude and layer fluid depth ratio. Tension increments of mooring lines also changed little with the pretension but increased rapidly when amplitude and layer fluid depth ratio increased. However, FPSO’s motion increased quickly with not only the horizontal pretension but also the amplitude of internal solitary wave and layer fluid depth ratio.
  • 加载中
    1. [1]

      Alford, M.H., Peacock, T., MacKinnon, J.A., Nash, J.D., Buijsman, M.C., Centurioni, L.R., Chao, S.Y., Chang, M.H., Farmer, D.M., Fringer, O.B., Fu, K.H., Gallacher, P.C., Graber H.C., Helfrich, K.R., Jachec, S.M., Jackson, C.R., Klymak, J.M., Ko, D.S., Jan, S., Johnston, T.M.S., Legg, S., Lee, I.H., Lien, R.C., Mercier, M.J., Moum, J.N., Musgrave, R., Park, J.H., Pickering, A.I., Pinkel, R., Rainville, L., Ramp, S.R., Rudnick, D.L., Sarkar, S., Scotti, A., Simmons, H.L., St Laurent, L.C., Venayagamoorthy, S.K., Wang, Y.H., Wang, J., Yang, Y.J., Paluszkiewicz, T. and Tang, T.Y., 2015. The formation and fate of internal waves in the South China Sea, Nature, 521(7550), 65–69. doi: 10.1038/nature14399

    2. [2]

      Bole, J.B., Ebbesmeyer, C.C. and Romea, R.D., 1994. Soliton currents in the South China Sea: measurements and theoretical modeling, Paper presented at the Offshore Technology Conference, OTC, Houston, USA, 304–307.

    3. [3]

      Cai, S.Q., Long, X.M. and Gan, Z.J., 2003. A method to estimate the forces exerted by internal solitons on cylindrical piles, Ocean Engineering, 30(5), 673–689. doi: 10.1016/S0029-8018(02)00038-0

    4. [4]

      Cai, S.Q., Long, X.M. and Wang, S.A., 2008. Forces and torques exerted by internal solitons in shear flows on cylindrical piles, Applied Ocean Research, 30(1), 72–77. doi: 10.1016/j.apor.2008.03.001

    5. [5]

      Cai, S.Q., Wang, S.A. and Long, X.M., 2006. A simple estimation of the force exerted by internal solitons on cylindrical piles, Ocean Engineering, 33(7), 974–980. doi: 10.1016/j.oceaneng.2005.05.012

    6. [6]

      Cai, S.Q., Xie, J.S. and He, J.L., 2012. An overview of internal solitary waves in the South China Sea, Surveys in Geophysics, 33(5), 927–943. doi: 10.1007/s10712-012-9176-0

    7. [7]

      Cai, S.Q., Xu, J.X., Chen, Z.W., Xie, J.S., Deng, X.D. and Lv, H.B., 2014. The effect of a seasonal stratification variation on the load exerted by internal solitary waves on a cylindrical pile, Acta Oceanologica Sinica, 33(7), 21–26. doi: 10.1007/s13131-014-0468-8

    8. [8]

      Camassa, R., Choi, W., Michallet, H., Rusås, P.Q. and Sveen, J.K., 2006. On the realm of validity of strongly nonlinear asymptotic approximations for internal waves, Journal of Fluid Mechanics, 549, 1–23. doi: 10.1017/S0022112005007226

    9. [9]

      Chang, M.H., Lien, R.C., Yang, Y.J. and Tang, T.Y., 2011. Nonlinear internal wave properties estimated with moored ADCP measurements, Journal of Atmospheric and Oceanic Technology, 28(6), 802–815. doi: 10.1175/2010JTECHO814.1

    10. [10]

      Chen, J.H., 1996. The development of Liuhua 11-1 oilfield in South China Sea, China Offshore Platform, (1), 44–46. (in Chinese)

    11. [11]

      Chen, M., Chen, K. and You, Y.X., 2017. Experimental investigation of internal solitary wave forces on a semi-submersible, Ocean Engineering, 141, 205–214. doi: 10.1016/j.oceaneng.2017.06.027

    12. [12]

      Chen, M., Chen, K., You, Y.X. and Yu, H.T., 2018. Experimental study of forces on a multi-column floating platform in internal solitary waves, Applied Ocean Research, 78, 192–200. doi: 10.1016/j.apor.2018.06.014

    13. [13]

      Dong, D., Yang, X.F., Li, X.F. and Li, Z.W., 2016. SAR observation of eddy-induced mode-2 internal solitary waves in the South China Sea, IEEE Transactions on Geoscience and Remote Sensing, 54(11), 6674–6686. doi: 10.1109/TGRS.2016.2587752

    14. [14]

      Du, H., Wei, G., Gu, M.M., Wang, X.L. and Xu, J.X., 2016. Experimental investigation of the load exerted by nonstationary internal solitary waves on a submerged slender body over a slope, Applied Ocean Research, 59, 216–223. doi: 10.1016/j.apor.2016.05.003

    15. [15]

      Guo, C. and Chen, X., 2014. A review of internal solitary wave dynamics in the northern South China Sea, Progress in Oceanography, 121, 7–23. doi: 10.1016/j.pocean.2013.04.002

    16. [16]

      Huang, W.H., Lin, Z.Y. and You, Y.X., 2015. Dynamic response characteristics of a spar platform under internal solitary waves, The Ocean Engineering, 33(2), 21–31. (in Chinese)

    17. [17]

      Huang, W.H., You, Y.X., Shi, Q., Wang, J.Y. and Hu, T.Q., 2013. The experiments of internal solitary wave loads and their theoretical model for a semi-submersible platform, Chinese Journal of Hydrodynamics, 28(6), 644–657. (in Chinese)

    18. [18]

      Huang, X.D., Chen, Z.H., Zhao, W., Zhang, Z.W., Zhou, C., Yang, Q.X. and Tian, J.W., 2016. An extreme internal solitary wave event observed in the northern South China Sea, Scientific Reports, 6(1), 30041. doi: 10.1038/srep30041

    19. [19]

      Lien, R.C., Henyey, F., Ma, B. and Yang, Y.J., 2014. Large-amplitude internal solitary waves observed in the Northern South China Sea: properties and energetics, Journal of Physical Oceanography, 44(4), 1095–1115. doi: 10.1175/JPO-D-13-088.1

    20. [20]

      Liu, A.K., Apel, J.R. and Holbrook, J.R., 1985. Nonlinear internal wave evolution in the Sulu Sea, Journal of Physical Oceanography, 15(12), 1613–1624. doi: 10.1175/1520-0485(1985)015<1613:NIWEIT>2.0.CO;2

    21. [21]

      Osborne, A.R. and Burch, T.L., 1980. Internal solitons in the Andaman Sea, Science, 208(4443), 451–460. doi: 10.1126/science.208.4443.451

    22. [22]

      Ostrovsky, L.A. and Stepanyants, Y.A., 1989. Do internal solitions exist in the ocean? Reviews of Geophysics, 27(3), 293–310. doi: 10.1029/RG027i003p00293

    23. [23]

      Si, Z.S., Zhang, Y.L. and Fan, Z.S., 2012. A numerical simulation of shear forces and torques exerted by large-amplitude internal solitary waves on a rigid pile in South China Sea, Applied Ocean Research, 37, 127–132. doi: 10.1016/j.apor.2012.05.002

    24. [24]

      Song, Z.J., Gou, Y., Teng, B., Shi, Z.M., Qu Y. and Xiao, Y., 2010. The motion responses of a Spar platform under internal solitary wave, Acta Oceanologica Sinina, 32(2), 12–19. (in Chinese)

    25. [25]

      Song, Z.J., Teng, B., Gou, Y., Lu, L., Shi, Z.M., Xiao, Y. and Qu, Y., 2011. Comparisons of internal solitary wave and surface wave actions on marine structures and their responses, Applied Ocean Research, 33(2), 120–129. doi: 10.1016/j.apor.2011.01.003

    26. [26]

      Wang, C., Du, W., Du, P., Li, Z.Y., Zhao, S., Hu, H.B., Chen, X.P. and Huang, X., 2022. Influence of diving depth on motion response and load characteristics of submerged body under action of internal solitary wave, Chinese Journal of Theoretical and Applied Mechanics, 54(7), 1921–1933. (in Chinese)

    27. [27]

      Wang, X., Zhou, J.F., Wang, Z. and You, Y.X., 2018. A numerical and experimental study of internal solitary wave loads on semi-submersible platforms, Ocean Engineering, 150, 298–308. doi: 10.1016/j.oceaneng.2017.12.042

    28. [28]

      Xie, J.S., He, Y.H. and Cai, S.Q., 2019. Bumpy topographic effects on the transbasin evolution of large-amplitude internal solitary wave in the northern South China Sea, Journal of Geophysical Research: Oceans, 124(7), 4677–4695. doi: 10.1029/2018JC014837

    29. [29]

      Xie, J.S., He, Y.H., Lü, H.B., Chen, Z.W., Xu, J.X. and Cai, S.Q., 2016. Distortion and broadening of internal solitary wavefront in the northeastern South China Sea deep basin, Geophysical Research Letters, 43(14), 7617–7624. doi: 10.1002/2016GL070093

    30. [30]

      Xie, J.S., Jian, Y.J. and Yang, L.G., 2010. Strongly nonlinear internal soliton load on a small vertical circular cylinder in two-layer fluids, Applied Mathematical Modelling, 34(8), 2089–2101. doi: 10.1016/j.apm.2009.10.021

    31. [31]

      Xie, J.S., Xu, J.X. and Cai, S.Q., 2011. A numerical study of the load on cylindrical piles exerted by internal solitary waves, Journal of Fluids and Structures, 27(8), 1252–1261. doi: 10.1016/j.jfluidstructs.2011.04.007

    32. [32]

      Zhang, R.R., Chen, K. and You, Y.X., 2019. Experimental, numerical and simplified theoretical model study for internal solitary wave load on FPSO with emphasis on scale effect, China Ocean Engineering, 33(1), 26–33. doi: 10.1007/s13344-019-0003-y

    33. [33]

      Zhang, R.R., Chen, K., You, Y.X. and Ji, M., 2021. Experimental investigation and simplified prediction model study of internal solitary wave forces on FPSO, Journal of Ship Mechanics, 25(6), 704–715.

    34. [34]

      Zhang, R.R., Wang, H.W., Chen, K., You, Y.X., Zhang, S.G. and Xiong, X.H., 2022. Experimental investigation and prediction model of the loads exerted by oblique internal solitary waves on FPSO, China Ocean Engineering, 36(2), 179–190. doi: 10.1007/s13344-022-0017-8

  • 加载中
    1. [1]

      Rui-rui ZHANGHong-wei WANGKe CHENYun-xiang YOUShu-guang ZHANGXiao-hu XIONG . Experimental Investigation and Prediction Model of the Loads Exerted by Oblique Internal Solitary Waves on FPSO. China Ocean Engineering, 2022, 36(2): 179-190. doi: 10.1007/s13344-022-0017-8

    2. [2]

      . Theoretical Model and Dynamic Analysis of Soft Yoke Mooring System. China Ocean Engineering, 2008, (2): -.

    3. [3]

      ZHANG Huo-mingKONG Ling-binGUAN Wei-bingHUANG Sai-huaFANG Gui-sheng . Dynamic Response Analysis of the Equivalent Water Depth Truncated Point of the Catenary Mooring Line. China Ocean Engineering, 2017, (1): 37-47. doi: 10.1007/s13344-017-0005-6

    4. [4]

      Rui-rui ZHANGKe CHENYun-xiang YOU . Experimental, Numerical and Simplified Theoretical Model Study for Internal Solitary Wave Load on FPSO with Emphasis on Scale Effect. China Ocean Engineering, 2019, 33(1): 26-33. doi: 10.1007/s13344-019-0003-y

    5. [5]

      Chen-jie BIANLi-ming DUGa-ping WANGXin LIWei-ran LI . Dynamic Response of Sea-Crossing Rail-cum-Road Cable-Stayed Bridge Influenced by Random Wind–Wave–Undercurrent Coupling. China Ocean Engineering, 2023, 37(1): 85-100. doi: 10.1007/s13344-023-0008-4

    6. [6]

      Zhen LIUHai-yan GUO . Dynamic Response Study of Steel Catenary Riser Based on Slender Rod Model. China Ocean Engineering, 2019, 33(1): 57-64. doi: 10.1007/s13344-019-0006-8

    7. [7]

      Qing-song LIUWei-pao MIAOMin-nan YUEChun LIBo WANGQing-wei DING . Dynamic Response of Offshore Wind Turbine on 3×3 Barge Array Floating Platform under Extreme Sea Conditions. China Ocean Engineering, 2021, 35(2): 186-200. doi: 10.1007/s13344-021-0017-0

    8. [8]

      Ying SUNJia-dong WANGRui-li HUODing ZHOUZhen-yuan GUWang-ping QIAN . Dynamic Response of A Group of Cylindrical Storage Tanks with Baffles Considering the Effect of Soil Foundation. China Ocean Engineering, 2024, 38(1): 129-143. doi: 10.1007/s13344-024-0011-4

    9. [9]

      Kun LIUYu GAOChen-shui ZHAOZe-ping WANG . Dynamic Response of the U-Typed Sandwich Panel Under Explosion Load Based on the SDOF Method. China Ocean Engineering, 2022, 36(5): 814-826. doi: 10.1007/s13344-022-0073-0

    10. [10]

      Teng WANGjun-jie HAOXiao-ni WUYe LIXiao-tong WANG . Effect of Failure Mode of Taut Mooring System on the Dynamic Response of A Semi-Submersible Platform. China Ocean Engineering, 2021, 35(6): 841-851. doi: 10.1007/s13344-021-0074-4

    11. [11]

      Shuang-yi XIEJian GAOYong-ran LIShu-xin JIANGCheng-lin ZHANGJiao HE . Aero-Hydro-Elastic-Servo Modeling and Dynamic Response Analysis of A Monopile Offshore Wind Turbine Under Different Operating Scenarios. China Ocean Engineering, 2024, 38(3): 379-393. doi: 10.1007/s13344-024-0031-0

    12. [12]

      CIHAN Hulya KarakusCIHAN Kubilay . Dynamic Responses of Block Type Quay Walls Under Cyclic Loading. China Ocean Engineering, 2021, 35(2): 281-290. doi: 10.1007/s13344-021-0025-0

    13. [13]

      Han WANGZhi-qiang HUXiang-yin MENG . Dynamic Performance Investigation of A Spar-Type Floating Wind Turbine Under Different Sea Conditions. China Ocean Engineering, 2018, 32(3): 256-265. doi: 10.1007/s13344-018-0027-8

    14. [14]

      Ying-ying WANGChao YANGZhong-shan YANGXiao-yu ZHAOJian-xi YINYang-dong HU . Dynamic Analysis of A Subsea Suspended Manifold Going Through Splash Zone During Installation. China Ocean Engineering, 2022, 36(4): 553-564. doi: 10.1007/s13344-022-0047-2

    15. [15]

      Wan-zhen YUEKun-lin WANGJia-qiang JIANGSong-wei SHENGWen-zhao LUTeng HEXian-yuan YANG . Hydrodynamic Performance and Structural Response of a Sharp Eagle Wave Energy Converter Platform Under Extreme Sea States. China Ocean Engineering, 2025, 39(2): 373-382. doi: 10.1007/s13344-025-0029-2

    16. [16]

      Yong-sheng ZHAOXiao-he SHEYan-ping HEJian-min YANGTao PENGYu-feng KOU . Experimental Study on New Multi-Column Tension-Leg-Type Floating Wind Turbine. China Ocean Engineering, 2018, 32(2): 123-131. doi: 10.1007/s13344-018-0014-0

    17. [17]

      Bai-cheng LYUWen-hua WUWei-an YAOYu DU . Lateral Vibration Behavior Analysis and TLD Vibration Absorption Design of the Soft Yoke Single-Point Mooring System. China Ocean Engineering, 2017, 31(3): 284-290. doi: 10.1007/s13344-017-0033-2

    18. [18]

      唐友刚李 焱王 宾刘树晓朱龙欢 . Dynamic Analysis of Turret-Moored FPSO System in Freak Wave. China Ocean Engineering, 2016, (4): 521-534.

    19. [19]

      . Shallow Water Effects on Surge Motion and Load of Soft Yoke Moored FPSO. China Ocean Engineering, 2007, (2): -.

    20. [20]

      . Time-Variant Reliability Analysis of FPSO Hull Girder Considering Corrosion Based on Statistics. China Ocean Engineering, 2007, (2): -.

Metrics
  • PDF Downloads(17)
  • Abstract views(3600)
  • HTML views(2637)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

水利部交通运输部国家能源局南京水利科学研究院 《中国海洋工程》编辑部 版权所有

Address: 34 Hujuguan, Nanjing 210024, China Pos: 210024 Tel: 025-85829388 E-mail: coe@nhri.cn

Support by Beijing Renhe Information Technology Co. Ltd E-mail: info@rhhz.net

苏ICP备05007122号-5

/

DownLoad:  Full-Size Img  PowerPoint
Return