ISSN  0890-5487 CN 32-1441/P

Citation: Xin-yao ZHU, Yue HAN, Pu YANG and Dai-yu ZHANG. Investigation of the Interaction Between the Free Surface and A Semi/Shallowly Submerged Underwater Vehicle[J]. China Ocean Engineering, 2024, 38(5): 771-784. doi: 10.1007/s13344-024-0060-8 shu

Investigation of the Interaction Between the Free Surface and A Semi/Shallowly Submerged Underwater Vehicle

  • Corresponding author: Yue HAN, hy881215@gmail.com
  • Received Date: 2023-09-23
    Accepted Date: 2024-03-05
    Available Online: 2024-10-22

  • The present study aims to investigate the interaction between the free surface and a semi/shallowly submerged underwater vehicle, especially when the submergence depth h is smaller than 0.75D (D: submarine maximum diameter). In this respect, the straight-ahead simulations of the generic SUBOFF underwater vehicle geometry are conducted with constant forward velocities using the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with a Shear-Stress Transport (SST) k-ω turbulence model in commercial code Fluent, at submergence depths and Froude numbers ranging from h = 0 to h = 3.3D and from Fn = 0.205 to Fn = 0.512, respectively. The numerical models are verified against the existing experimental data. The analysis of the obtained results indicates that in the case of the semi and shallowly submerged underwater vehicle (UV), both the submergence depth and forward velocity have a great effect on the behaviors of hydrodynamic forces acting on the UV. The magnitude of maximum total resistance may reach almost five times the value of resistance exerted on the totally submerged hull. Both the forces acting on the UV and the generated waves when the submergence depth h is smaller than 0.75D are significantly different from those whenr h is larger than 0.75D. The conclusions can be used as reference for future research on near free surface motions of underwater vehicles and the design of small water-plane area twin hull.
  • 加载中
    1. [1]

      Amiri, M.M., Esperança, P.T., Vitola, M.A. and Sphaier, S.H., 2018. How does the free surface affect the hydrodynamics of a shallowly submerged submarine, Applied Ocean Research, 76, 34–50. doi: 10.1016/j.apor.2018.04.008

    2. [2]

      Amiri, M.M., Sphaier, S.H., Vitola, M.A. and Esperança, P.T., 2019a. Investigation into the wave system of a generic submarine moving along a straight path beneath the free surface, European Journal of Mechanics-B/Fluids, 76, 98–114. doi: 10.1016/j.euromechflu.2019.02.006

    3. [3]

      Amiri, M.M., Sphaier, S.H., Vitola, M.A. and Esperança, P.T., 2019b. URANS investigation of the interaction between the free surface and a shallowly submerged underwater vehicle at steady drift, Applied Ocean Research, 84, 192–205. doi: 10.1016/j.apor.2019.01.012

    4. [4]

      Amiri, M.M., Esperança, P.T., Vitola, M.A. and Sphaier, S.H., 2020a. An initial evaluation of the free surface effect on the maneuverability of underwater vehicles, Ocean Engineering, 196, 106851. doi: 10.1016/j.oceaneng.2019.106851

    5. [5]

      Amiri, M.M., Sphaier, S.H., Vitola, M.A. and Esperança, P.T., 2020b. Viscosity effect on an underwater vehicle-free surface hydrodynamic interaction, Applied Ocean Research, 104, 102365. doi: 10.1016/j.apor.2020.102365

    6. [6]

      ANSYS Inc., 2022. ANSYS Fluent Theory Guide.

    7. [7]

      Broglia, R., Di Mascio, A. and Muscari, R., 2007. Numerical study of confined water effects on self-propelled submarine in steady manoeuvres, International Journal of Offshore and Polar Engineering, 17(2), 89–96.

    8. [8]

      Carrica, P.M., Kerkvliet, M., Quadvlieg, F.H.H.A., Pontarelli, M. and Martin, J.E., 2016. CFD simulations and experiments of a maneuvering generic submarine and prognosis for simulation of near surface operation, Proceedings of the 31st Symposium on Naval Hydrodynamics, Monterey, CA, USA, pp. 11–16.

    9. [9]

      Groves, N.C., Huang, T.T. and Chang, M.S., 1989. Geometric Characteristics of DARPA (Defense Advanced Research Projects Agency ) SUBOFF Models (DTRC Model Numbers 5470 and 5471 ), David Taylor Research Center, Bethesda.

    10. [10]

      Jagadeesh, P. and Murali, K., 2010. Rans predictions of free surface effects on axisymmetric underwater body, Engineering Applications of Computational Fluid Mechanics, 4(2), 301–313. doi: 10.1080/19942060.2010.11015318

    11. [11]

      Li, D., Yang, Q., Zhai, L., Wang, Z. and He, C.L., 2021. Numerical investigation on the wave interferences of submerged bodies operating near the free surface, International Journal of Naval Architecture and Ocean Engineering, 13, 65–74. doi: 10.1016/j.ijnaoe.2021.01.002

    12. [12]

      Liu H.L. and Huang, T.T., 1998. Summary of DARPA Suboff Experimental Program Data, Naval Surface Warfare Center, Carderock Division, West Bethesda.

    13. [13]

      Ma, W.Z., Li, Y.B., Ding, Y., Duan, F. and Hu, K.Y., 2020. Numerical investigation of internal wave and free surface wave induced by the DARPA Suboff moving in a strongly stratified fluid, Ships and Offshore Structures, 15(6), 587–604. doi: 10.1080/17445302.2019.1661633

    14. [14]

      Mansoorzadeh, S. and Javanmard, E., 2014. An investigation of free surface effects on drag and lift coefficients of an autonomous underwater vehicle (AUV) using computational and experimental fluid dynamics methods, Journal of Fluids and Structures, 51, 161–171. doi: 10.1016/j.jfluidstructs.2014.09.001

    15. [15]

      Nematollahi, A., Dadvand, A. and Dawoodian, M., 2015. An axisymmetric underwater vehicle-free surface interaction: a numerical study, Ocean Engineering, 96, 205–214. doi: 10.1016/j.oceaneng.2014.12.028

    16. [16]

      Newman, J.N., 1977. Marine Hydrodynamics, MIT Press, Cambridge.

    17. [17]

      Salari, M. and Rava, A., 2017. Numerical investigation of hydrodynamic flow over an AUV moving in the water-surface vicinity considering the laminar-turbulent transition, Journal of Marine Science and Application, 16(3), 298–304. doi: 10.1007/s11804-017-1422-x

    18. [18]

      Shariati, S.K. and Mousavizadegan, S.H., 2017. The effect of appendages on the hydrodynamic characteristics of an underwater vehicle near the free surface, Applied Ocean Research, 67, 31–43. doi: 10.1016/j.apor.2017.07.001

    19. [19]

      Stern, F., Wilson, R. and Shao, J., 2006. Quantitative V&V of CFD simulations and certification of CFD codes, International Journal for Numerical Methods in Fluids, 50(11), 1335–1355. doi: 10.1002/fld.1090

  • 加载中
    1. [1]

      Ling-shuai MENGYang LINHai-tao GUTsung-Chow SU . Study of the Dynamic Characteristics of A Cone-Shaped Recovery System on Submarines for Recovering Autonomous Underwater Vehicle. China Ocean Engineering, 2020, 34(3): 387-399. doi: 10.1007/s13344-020-0035-3

    2. [2]

      ZHANG Hong-shengZHENG Bi-fangYANG Xiao-yan . Interaction of Oblique Waves and A Rectangular Structure with An Opening Near A Vertical Wall. China Ocean Engineering, 2017, (2): 220-229. doi: 10.1007/s13344-017-0026-1

    3. [3]

      Ya-xing WANGJin-fu LIUTie-jun LIUZhi-bin JIANGYuan-gui TANGCheng HUANG . A Numerical and Experimental Study on the Hull-Propeller Interaction of A Long Range Autonomous Underwater Vehicle. China Ocean Engineering, 2019, 33(5): 573-582. doi: 10.1007/s13344-019-0055-z

    4. [4]

      De-min LIXiao-chen DONGHong-da SHIYan-ni LI . Theoretical and Experimental Study of A Coaxial Double-Buoy Wave Energy Converter. China Ocean Engineering, 2021, 35(3): 454-464. doi: 10.1007/s13344-021-0042-z

    5. [5]

      Si-jie XIERu-ke WUFu-xiang HUWei-hua SONG . Hydrodynamic Characteristics of the Biplane-Type Otter Board with the Canvas Through Flume−Tank Experiment. China Ocean Engineering, 2022, 36(6): 911-921. doi: 10.1007/s13344-022-0080-1

    6. [6]

      Heng-xu LIUMing LIUYuan-chao CHAIGuo-yang SHUFeng-mei JINGLi-quan WANG . Piezoelectric Energy Analysis on Diverse Buoy Coupling with Hydrodynamic Parameters. China Ocean Engineering, 2019, 33(3): 279-287. doi: 10.1007/s13344-019-0027-3

    7. [7]

      CHEN Yong-kunYong LIUD. Meringolo Domenico . Comparison of Hydrodynamic Performances Between Single Pontoon and Double Pontoon Floating Breakwaters Through the SPH Method. China Ocean Engineering, 2022, 36(6): 894-910. doi: 10.1007/s13344-022-0078-8

    8. [8]

      Shuang-shuang FANXiao-han CIBOSE NeilXiao CHENG . Structural and Operational Optimization of A Flapping Fin Used as A Self-Propulsor for AUV Propulsion. China Ocean Engineering, 2022, 36(1): 86-99. doi: 10.1007/s13344-022-0007-x

    9. [9]

      . Neural Network Based Robust Controller for Trajectory Tracking of Underwater Vehicles. China Ocean Engineering, 2007, (2): -.

    10. [10]

      Abtahi Seid FarhadAlishahi Mohammad MehdiYazdi Ehsan Azadi . Identification of Pitch Dynamics of An Autonomous Underwater Vehicle Using Sensor Fusion. China Ocean Engineering, 2019, 33(5): 563-572. doi: 10.1007/s13344-019-0054-0

    11. [11]

      Jin WANGShu-qi WANGQing-dian JIANGYun-xin XUWei-chao SHI . Effect of Different Raft Shapes on Hydrodynamic Characteristics of the Attenuator-Type Wave Energy Converter. China Ocean Engineering, 2023, 37(4): 645-659. doi: 10.1007/s13344-023-0055-x

    12. [12]

      Xin-yu LIUYi-ping LIYa-xing WANGXi-sheng FENG . Hydrodynamic Modeling with Grey-Box Method of A Foil-Like Underwater Vehicle. China Ocean Engineering, 2017, 31(6): 773-780. doi: 10.1007/s13344-017-0088-0

    13. [13]

      潘立鑫金鸿章王琳琳 . Robust Control Based on Feedback Linearization for Roll Stabilizing of Autonomous Underwater Vehicle Under Wave Disturbances. China Ocean Engineering, 2011, (2): 251-263.

    14. [14]

      Ming-wei FENGZhao-chen SUNShu-xiu LIANGZhi LIXuan LVSong-lin JIAXin-yue HU . Experimental Study of Mooring Type Effect on the Hydrodynamic Characteristics of VLFS. China Ocean Engineering, 2022, 36(1): 155-166. doi: 10.1007/s13344-022-0014-y

    15. [15]

      . Improvements on Mean Free Wave Surface Modeling. China Ocean Engineering, 2002, (4): -.

    16. [16]

      Ya-qun ZHANGSong-wei SHENGYa-ge YOUZhen-xin HUANGWen-sheng WANG . Study of Hydrodynamic Characteristics of A Sharp Eagle Wave Energy Converter. China Ocean Engineering, 2017, 31(3): 364-369. doi: 10.1007/s13344-017-0043-0

    17. [17]

      . Vertical 2D Modeling of Free Surface Flow with Hydrodynamic Pressure Using SIMPLE Arithmetic in σ Coordinates. China Ocean Engineering, 2004, (1): -.

    18. [18]

      . Vertical 2D Modeling of Free Surface Flow with Hydrodynamic Pressure Using SIMPLE Arithmetic in σ Coordinates. China Ocean Engineering, 2004, (1): -.

    19. [19]

      Hong-qian ZHANGMing-xiao XIEChi ZHANGShao-wu LIHua-qing ZHANGYu-chen SUN . Study on Hydrodynamic Characteristics of Wave Turbulent Bottom Boundary Layer Using A Large-Sized Wave Flume. China Ocean Engineering, 2021, 35(5): 759-766. doi: 10.1007/s13344-021-0067-3

    20. [20]

      肖 巍姚熊亮郭 君 . Wall Effect of Underwater Explosion Load Based on Wave Motion Theories. China Ocean Engineering, 2014, (5): 587-598.

Metrics
  • PDF Downloads(2)
  • Abstract views(2970)
  • HTML views(2539)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

水利部交通运输部国家能源局南京水利科学研究院 《中国海洋工程》编辑部 版权所有

Address: 34 Hujuguan, Nanjing 210024, China Pos: 210024 Tel: 025-85829388 E-mail: coe@nhri.cn

Support by Beijing Renhe Information Technology Co. Ltd E-mail: info@rhhz.net

苏ICP备05007122号-5

/

DownLoad:  Full-Size Img  PowerPoint
Return