ISSN  0890-5487 CN 32-1441/P

Citation: Yong-kun CHEN, D. MERINGOLO Domenico and Yong LIU. Numerical Simulations of Wave Impact Forces on the Open-Type Sea Access Road Using A Two-Phase SPH Model[J]. China Ocean Engineering, 2024, 38(5): 755-770. doi: 10.1007/s13344-024-0059-1 shu

Numerical Simulations of Wave Impact Forces on the Open-Type Sea Access Road Using A Two-Phase SPH Model

  • Corresponding author: Yong LIU, liuyong@ouc.edu.cn
  • Received Date: 2023-12-26
    Accepted Date: 2024-05-07
    Available Online: 2024-10-22

  • A numerical study based on a two-dimensional two-phase SPH (Smoothed Particle Hydrodynamics) model to analyze the action of water waves on open-type sea access roads is presented. The study is a continuation of the analyses presented by Chen et al. (2022), in which the sea access roads are semi-immersed. In this new configuration, the sea access roads are placed above the still water level, therefore the presence of the air phase becomes a relevant issue in the determination of the wave forces acting on the structures. Indeed, the comparison of wave forces on the open-type sea access roads obtained from the single and two-phase SPH models with the experimental results shows that the latter are in much better agreement. So in the numerical simulations, a two-phase δ-SPH model is adopted to investigate the dynamical problems. Based on the numerical results, the maximum horizontal and uplifting wave forces acting on the sea access roads are analyzed by considering different wave conditions and geometries of the structures. In particular, the presence of the girder is analyzed and the differences in the wave forces due to the air cushion effects which are created below the structure are highlighted.
  • 加载中
    1. [1]

      Adami, S., Hu, X.Y. and Adams, N.A., 2012. A generalized wall boundary condition for smoothed particle hydrodynamics, Journal of Computational Physics, 231(21), 7057–7075.

    2. [2]

      AlMashan, N., Neelamani, S., Raju, B.J. and Al-Houti, D., 2023. Wave-impact forces and moments due to random waves on a jacket-type platform for different relative submergence of the deck, Applied Ocean Research, 140, 103748.

    3. [3]

      Antuono, M., Colagrossi, A., Marrone, S. and Molteni, D., 2010. Free-surface flows solved by means of SPH schemes with numerical diffusive terms, Computer Physics Communications, 181(3), 532–549. doi: 10.1016/j.cpc.2009.11.002

    4. [4]

      Antuono, M., Marrone, S., Colagrossi, A. and Bouscasse, B., 2015. Energy balance in the δ-SPH scheme, Computer Methods in Applied Mechanics and Engineering, 289, 209–226.

    5. [5]

      Chen, Y.K., Meringolo, D.D. and Liu, Y., 2022. SPH study of wave force on simplified superstructure of open-type sea access road, Ocean Engineering, 249, 110869.

    6. [6]

      Cheng, H., Liu, Y., Ming, F.R. and Sun, P.N., 2022. Investigation on the bouncing and coalescence behaviors of bubble pairs based on an improved APR-SPH method, Ocean Engineering, 255, 111401.

    7. [7]

      Cheng, H., Ming, F.R., Sun, P.N., Sui, Y.T. and Zhang, A.M., 2020. Ship hull slamming analysis with smoothed particle hydrodynamics method, Applied Ocean Research, 101, 102268. doi: 10.1016/j.apor.2020.102268

    8. [8]

      Chuang, S.L., 1966. Experiments on flat-bottom slamming, Journal of Ship Research, 10(1), 10–17. doi: 10.5957/jsr.1966.10.1.10

    9. [9]

      Colagrossi, A. and Landrini, M., 2003. Numerical simulation of interfacial flows by smoothed particle hydrodynamics, Journal of Computational Physics, 191(2), 448–475.

    10. [10]

      Dehnen, W. and Aly, H., 2012. Improving convergence in smoothed particle hydrodynamics simulations without pairing instability, Monthly Notices of the Royal Astronomical Society, 425(2), 1068–1082. doi: 10.1111/j.1365-2966.2012.21439.x

    11. [11]

      Gao, J.L., Mi, C.L., Song, Z.W. and Liu, Y.Y., 2024. Transient gap resonance between two closely-spaced boxes triggered by nonlinear focused wave groups, Ocean Engineering, 305, 117938. doi: 10.1016/j.oceaneng.2024.117938

    12. [12]

      Gao, R., Ren, B., Wang, G.Y. and Wang, Y.X., 2012. Numerical modelling of regular wave slamming on subface of open-piled structures with the corrected SPH method, Applied Ocean Research, 34, 173–186.

    13. [13]

      Gong, K., Shao, S.D., Liu, H. Wang, B.L. and Tang, S.K., 2016. Two-phase SPH simulation of fluid-structure interactions, Journal of Fluids and Structures, 65, 155–179. doi: 10.1016/j.jfluidstructs.2016.05.012

    14. [14]

      Grenier, N., Antuono, M., Colagrossi, A., Le Touzé, D. and Alessandrini, B., 2009. An Hamiltonian interface SPH formulation for multi-fluid and free surface flows, Journal of Computational Physics, 228(22), 8380–8393.

    15. [15]

      Hammani, I., Marrone, S., Colagrossi, A., Oger, G. and Le Touze, D., 2020. Detailed study on the extension of the δ-SPH model to multi-phase flow, Computer Methods in Applied Mechanics and Engineering, 368, 113189. doi: 10.1016/j.cma.2020.113189

    16. [16]

      Hayatdavoodi, M., Seiffert, B. and Cengiz Ertekin, R., 2014. Experiments and computations of solitary-wave forces on a coastal-bridge deck. Part II: Deck with girders, Coastal Engineering, 88, 210–228.

    17. [17]

      He, M., Khayyer, A., Gao, X.F., Xu, W.H. and Liu, B.J., 2021. Theoretical method for generating solitary waves using plunger-type wavemakers and its smoothed particle hydrodynamics validation, Applied Ocean Research, 106, 102414.

    18. [18]

      Lü, H.G., Deng, R., Sun, P.N. and Miao, J.M., 2021. Study on the wedge penetrating fluid interfaces characterized by different density-ratios: Numerical investigations with a multi-phase SPH model, Ocean Engineering, 237, 109538.

    19. [19]

      Lewison, G. and Maclean, W.M., 1968. On the cushioning of water impact by entrapped air, Journal of Ship Research, 12(2), 116–130. doi: 10.5957/jsr.1968.12.2.116

    20. [20]

      Li, H.J., Liu, Y., Liang, B.C., Liu, F.S., Wu, G.X., Du, J.F., Hou, H.M., Li, A.J. and Shi, L.M., 2022. Demands and challenges for construction of marine infrastructures in China, Frontiers of Structural and Civil Engineering, 16(5), 551–563.

    21. [21]

      Lin, M.C. and Shieh, L.D., 1997. Simultaneous measurements of water impact on a two-dimensional body, Fluid Dynamics Research, 19(3), 125. doi: 10.1016/S0169-5983(96)00033-0

    22. [22]

      Lind, S.J., Stansby, P.K., Rogers, B.D. and Lloyd, P.M., 2015. Numerical predictions of water–air wave slam using incompressible–compressible smoothed particle hydrodynamics, Applied Ocean Research, 49, 57–71.

    23. [23]

      Luo, M., Khayyer, A. and Lin, P.Z., 2021. Particle methods in ocean and coastal engineering, Applied Ocean Research, 114, 102734.

    24. [24]

      Luo, M., Koh, C.G., Lee, W.X., Lin, P.Z. and Reeve, D.E., 2020. Experimental study of freak wave impacts on a tension-leg platform, Marine Structures, 74, 102821. doi: 10.1016/j.marstruc.2020.102821

    25. [25]

      Luo, M., Rubinato, M., Wang, X. and Zhao, X.Z., 2022. Experimental investigation of freak wave actions on a floating platform and effects of the air gap, Ocean Engineering, 253, 111192. doi: 10.1016/j.oceaneng.2022.111192

    26. [26]

      Meringolo, D.D., Aristodemo, F. and Veltri, P., 2015. SPH numerical modeling of wave–perforated breakwater interaction, Coastal Engineering, 101, 48–68.

    27. [27]

      Meringolo, D.D., Lauria, A., Aristodemo, F. and Filianoti, P.F., 2023. Large eddy simulation within the smoothed particle hydrodynamics: Applications to multiphase flows, Physics of Fluids, 35(6), 063312. doi: 10.1063/5.0150347

    28. [28]

      Park, D.M., Kwon, Y.J., Nam, H.S., Nam, B.W. and Lee, K., 2022. An experimental study of wave impact pressure on an FPSO bow under head sea conditions, Ocean Engineering, 249, 110993.

    29. [29]

      Ren, B., He, M., Dong, P. and Wen, H.J., 2015. Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method, Applied Ocean Research, 50, 1−12.

    30. [30]

      Salis, N., Hu, X.Y., Luo, M., Reali, A. and Manenti, S., 2024. 3D SPH analysis of focused waves interacting with a floating structure, Applied Ocean Research, 144, 103885. doi: 10.1016/j.apor.2024.103885

    31. [31]

      Sarfaraz, M. and Pak, A., 2017. SPH numerical simulation of tsunami wave forces impinged on bridge superstructures, Coastal Engineering, 121, 145–157. doi: 10.1016/j.coastaleng.2016.12.005

    32. [32]

      Sun, H.Y., Sun, Z.C., Liang, S.X. and Zhao, X.Z., 2019a. Numerical study of air compressibility effects in breaking wave impacts using a CIP-based model, Ocean Engineering, 174, 159–168. doi: 10.1016/j.oceaneng.2019.01.050

    33. [33]

      Sun, J.W., Sun, Z.C., Liang, S.X. and Zheng, K., 2011. Spectral analysis of random wave uplift force on a horizontal deck, Journal of Hydrodynamics, Ser. B, 23(1), 81–88.

    34. [34]

      Sun, P.N., Colagrossi, A., Marrone, S., Antuono, M. and Zhang, A.M., 2018. Multi-resolution Delta-plus-SPH with tensile instability control: Towards high Reynolds number flows, Computer Physics Communications, 224, 63–80.

    35. [35]

      Sun, P.N., Colagrossi, A., Marrone, S. and Zhang, A.M., 2017. The δplus-SPH model: Simple procedures for a further improvement of the SPH scheme, Computer Methods in Applied Mechanics and Engineering, 315, 25–49. doi: 10.1016/j.cma.2016.10.028

    36. [36]

      Sun, P.N., Le Touzé, D., Oger, G. and Zhang, A.M., 2021. An accurate SPH Volume Adaptive Scheme for modeling strongly-compressible multiphase flows. Part 1: Numerical scheme and validations with basic 1D and 2D benchmarks, Journal of Computational Physics, 426, 109937.

    37. [37]

      Sun, P.N., Le Touzé, D. and Zhang, A.M., 2019b. Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR, Engineering Analysis with Boundary Elements, 104, 240–258.

    38. [38]

      Sun, P.N., Luo, M., Le Touzé, D. and Zhang, A.M., 2019c. The suction effect during freak wave slamming on a fixed platform deck: Smoothed particle hydrodynamics simulation and experimental study, Physics of Fluids, 31(11), 117108. doi: 10.1063/1.5124613

    39. [39]

      Von Karman, T.H., 1929. The Impact on Seaplane Floats During Landing, NACA Technical Note, Washington: 321.

    40. [40]

      Wen, H.J. and Ren, B., 2018. A non-reflective spectral wave maker for SPH modeling of nonlinear wave motion, Wave Motion, 79, 112–128. doi: 10.1016/j.wavemoti.2018.03.003

    41. [41]

      Wu, G.X., 2007. Fluid impact on a solid boundary, Journal of Fluids and Structures, 23(5), 755–765.

    42. [42]

      Zhao, R. and Faltinsen, O., 1993. Water entry of two-dimensional bodies, Journal of Fluid Mechanics, 246, 593–612.

    43. [43]

      Zhou, T., Ma, Z., Zhai, G.J. and Chen, J.J., 2023. Wave-in-deck loads induced by regular wave impact: The role of compressible air entrainment, Journal of Fluids and Structures, 122, 103974. doi: 10.1016/j.jfluidstructs.2023.103974

  • 加载中
    1. [1]

      Zhong-xiang SHENWen-qing WANGCheng-yue XUJia-xin LUORen-wei LIU . An Innovative Coupled Common-Node Discrete Element Method-Smoothed Particle Hydrodynamics Model Developed with LS-DYNA and Its Applications. China Ocean Engineering, 2024, 38(3): 467-482. doi: 10.1007/s13344-024-0037-7

    2. [2]

      CHEN Yong-kunYong LIUD. Meringolo Domenico . Comparison of Hydrodynamic Performances Between Single Pontoon and Double Pontoon Floating Breakwaters Through the SPH Method. China Ocean Engineering, 2022, 36(6): 894-910. doi: 10.1007/s13344-022-0078-8

    3. [3]

      CHEN Yun-saiZHENG XingJIN Shan-qinDUAN Wen-yang . A Corrected Solid Boundary Treatment Method for Smoothed Particle Hydrodynamics. China Ocean Engineering, 2017, (2): 238-247. doi: 10.1007/s13344-017-0028-z

    4. [4]

      Run-kun WANGZu-chao ZHUXiang-hui SUDa-sheng TANGXing JINGRUSZCZYNSKI Maciej . Influence on the Solid−Liquid Two-Phase Flow from Cross-Section Area of Slurry Pumps for Deep-Sea Mining. China Ocean Engineering, 2022, 36(3): 439-450. doi: 10.1007/s13344-022-0039-2

    5. [5]

      Zhi-wei WANGYan-ping HEMing-zhi LIMing QIUChao HUANGYa-dong LIUZi WANG . Fluid−Structure Interaction of Two-Phase Flow Passing Through 90° Pipe Bend Under Slug Pattern Conditions. China Ocean Engineering, 2021, 35(6): 914-923. doi: 10.1007/s13344-021-0080-6

    6. [6]

      陈小文郑金海张 弛杨 琼 . Evaluation of Diffraction Predictability in Two Phase Averaged Wave Models. China Ocean Engineering, 2010, (2): 235-244.

    7. [7]

      郑 兴马庆位段文洋 . Comparative Study of Different SPH Schemes on Simulating Violent Water Wave Impact Flows. China Ocean Engineering, 2014, (6): 791-806.

    8. [8]

      . Vibrating-Sliding Motion of Caisson Breakwaters Under Various Breaking Wave Impact Forces. China Ocean Engineering, 2003, (4): -.

    9. [9]

      Zhi-wei HEJun-liang GAOJun ZANGHong-zhou CHENQian LIUGang WANG . Effects of Free Heave Motion on Wave Forces on Two Side-by-Side Boxes in Close Proximity Under Wave Actions. China Ocean Engineering, 2021, 35(4): 490-503. doi: 10.1007/s13344-021-0045-9

    10. [10]

      Chen-jie BIANLi-ming DUGa-ping WANGXin LIWei-ran LI . Dynamic Response of Sea-Crossing Rail-cum-Road Cable-Stayed Bridge Influenced by Random Wind–Wave–Undercurrent Coupling. China Ocean Engineering, 2023, 37(1): 85-100. doi: 10.1007/s13344-023-0008-4

    11. [11]

      . Experimental and Theoretical Investigation of Wave Forces on A Partially-Perforated Caisson Breakwater with A Rock-Filled Core. China Ocean Engineering, 2006, (2): -.

    12. [12]

      LIANG Dong-fangN. I. ThusyanthanS. P. Gopal Madabhushi唐洪武 . Modelling Solitary Waves and its Impact on Coastal Houses with SPH Method. China Ocean Engineering, 2010, (2): 353-368.

    13. [13]

      . A Vertical Two-Dimensional Model to Simulate Tidal Hydrodynamics in A Branched Estuary. China Ocean Engineering, 2005, (2): -.

    14. [14]

      王建超贡金鑫张艳青 . Statistical Analysis of Ship Impact Forces on Light Wharf Structures. China Ocean Engineering, 2010, (3): 575-583.

    15. [15]

      范士波连 琏任 平 . Research on Hydrodynamics Model Test for Deepsea Open-Framed Remotely Operated Vehicle. China Ocean Engineering, 2012, (2): 329-339.

    16. [16]

      . Wave Forces Acting on Vertical Walls. China Ocean Engineering, 2008, (1): -.

    17. [17]

      Hung-Chu HSUYang-Yih CHENChia-Yan CHENGWen-Jer TSENG . Particle Trajectories in Nonlinear Water Wave on Uniform Current. China Ocean Engineering, 2008, (4): 611-621.

    18. [18]

      Xi-feng RENZhao-chen SUNXing-gang WANGShu-xiu LIANG . SPH Numerical Modeling for the Wave–Thin Structure Interaction. China Ocean Engineering, 2018, 32(2): 157-168. doi: 10.1007/s13344-018-0017-x

    19. [19]

      . Wave Uplift Forces on the Bottom of a Circular Cylinder. China Ocean Engineering, 1996, (2): -.

    20. [20]

      . Numerical Simulation of Wave Forces on Seabed Pipelines. China Ocean Engineering, 1998, (2): -.

Metrics
  • PDF Downloads(0)
  • Abstract views(2696)
  • HTML views(2192)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

水利部交通运输部国家能源局南京水利科学研究院 《中国海洋工程》编辑部 版权所有

Address: 34 Hujuguan, Nanjing 210024, China Pos: 210024 Tel: 025-85829388 E-mail: coe@nhri.cn

Support by Beijing Renhe Information Technology Co. Ltd E-mail: info@rhhz.net

苏ICP备05007122号-5

/

DownLoad:  Full-Size Img  PowerPoint
Return