ISSN  0890-5487 CN 32-1441/P

Citation: Qi-dong YU, Zhao-yong MAO, Wen-long TIAN and Wei WANG. Suppression of Vortex-Induced Vibration Caused by A Terebridae-Inspired Cylinder with Different Helical Angles[J]. China Ocean Engineering, 2024, 38(5): 739-754. doi: 10.1007/s13344-024-0058-2 shu

Suppression of Vortex-Induced Vibration Caused by A Terebridae-Inspired Cylinder with Different Helical Angles

  • Corresponding author: Wei WANG, wei0908.wang@polyu.edu.hk
  • Received Date: 2023-11-16
    Accepted Date: 2024-02-28
    Available Online: 2024-10-22

Figures(19) / Tables(3)

  • Biomimetic design has recently received widespread attention. Inspired by the Terebridae structure, this paper provides a structural form for suppressing vortex-induced vibration (VIV) response. Four different structural forms are shown, including the traditional smooth cylinder (P0), and the Terebridae-inspired cylinder with the helical angle of 30° (P30), 60° (P60), and 90° (P90). Computational fluid dynamics (CFD) method is adopted to solve the flow pass the Terebridae-inspired structures, and the vibration equation is solved using the Newmark-β method. The results show that for P30, P60 and P90, the VIV responses are effectively suppressed in the lock-in region, and P60 showed the best VIV suppression performance. The transverse amplitude and the downstream amplitude can be reduced by 82.67% and 91.43% respectively for P60 compared with that for P0, and the peak of the mean-drag coefficient is suppressed by 53.33%. The Q-criterion vortices of P30, P60, and P90 are destroyed, with irregular vortices shedding. It is also found that the boundary layer separation is located on the Terebridae-inspired ribs. The twisted ribs cause the separation point to constantly change along the spanwise direction, resulting in the development of the boundary layer separation being completely destroyed. The strength of the wake flow is significantly weakened for the Terebridae-inspired cylinder.
  • 加载中
    1. [1]

      Behara, S., Ravikanth, B. and Chandra, V., 2023. On the galloping cross-flow vibration responses of three in-line square cylinders, Physics of Fluids, 35(6), 067112. doi: 10.1063/5.0146666

    2. [2]

      Castro Hebrero, F., D'Adamo, J., Sosa, R. and Artana, G., 2020. Vortex induced vibrations suppression for a cylinder with plasma actuators, Journal of Sound and Vibration, 468, 115121. doi: 10.1016/j.jsv.2019.115121

    3. [3]

      Chen, W.J., Wang, Q.L., Yan, L., Hu, G. and Noack, B.R., 2023. Deep reinforcement learning-based active flow control of vortex-induced vibration of a square cylinder, Physics of Fluids, 35(5), 053610. doi: 10.1063/5.0152777

    4. [4]

      Chen, W.L., Huang, Y.W., Chen, C.L., Yu, H.Y. and Gao, D.L., 2022. Review of active control of circular cylinder flow, Ocean Engineering, 258, 111840. doi: 10.1016/j.oceaneng.2022.111840

    5. [5]

      Cui, G.P. and Feng, L.H., 2023. Combined effect of bending stiffness and streamwise length of the attached flexible splitter plate on the vortex-induced vibration of a circular cylinder, Experimental Thermal and Fluid Science, 141, 110787. doi: 10.1016/j.expthermflusci.2022.110787

    6. [6]

      Ding, L., Kong, H., Zou, Q.F., Wang, J.L. and Zhang, L., 2022. 2-DOF vortex-induced vibration of rotating circular cylinder in shear flow, Ocean Engineering, 249, 111003. doi: 10.1016/j.oceaneng.2022.111003

    7. [7]

      Gao, Y., Yang, J.D., Xiong, Y.M., Wang, M.H. and Peng, G., 2016. Experimental investigation of the effects of the coverage of helical strakes on the vortex-induced vibration response of a flexible riser, Applied Ocean Research, 59, 53–64. doi: 10.1016/j.apor.2016.03.016

    8. [8]

      Gao, Y., Zong, Z., Zou, L., Takagi, S. and Jiang, Z.Y., 2018. Numerical simulation of vortex-induced vibration of a circular cylinder with different surface roughnesses, Marine Structures, 57, 165–179. doi: 10.1016/j.marstruc.2017.10.007

    9. [9]

      Garg, H., Soti, A.K. and Bhardwaj, R., 2019. Vortex-induced vibration of a cooled circular cylinder, Physics of Fluids, 31(8), 083608. doi: 10.1063/1.5112140

    10. [10]

      Hong, K.S. and Shah, U.H., 2018. Vortex-induced vibrations and control of marine risers: A review, Ocean Engineering, 152, 300–315. doi: 10.1016/j.oceaneng.2018.01.086

    11. [11]

      Ishihara, T. and Li, T., 2020. Numerical study on suppression of vortex-induced vibration of circular cylinder by helical wires, Journal of Wind Engineering and Industrial Aerodynamics, 197, 104081. doi: 10.1016/j.jweia.2019.104081

    12. [12]

      Jauvtis, N. and Williamson, C.H.K., 2004. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping, Journal of Fluid Mechanics, 509, 23–62. doi: 10.1017/S0022112004008778

    13. [13]

      Jie, H.G. and Liu, Y.Z., 2016. Large eddy simulation of turbulent flow over a cactus-analogue grooved cylinder, Journal of Visualization, 19(1), 61–78. doi: 10.1007/s12650-015-0294-x

    14. [14]

      Kang, Z., Zhang, C., Chang, R. and Ma, G., 2019. A numerical investigation of the effects of Reynolds number on vortex-induced vibration of the cylinders with different mass ratios and frequency ratios, International Journal of Naval Architecture and Ocean Engineering, 11(2), 835–850. doi: 10.1016/j.ijnaoe.2019.02.012

    15. [15]

      Li, Z.F., Song, G.M. and Chen, Y.L., 2020. Experimental study on bird-wing-shaped suppression device for vortex-induced vibration of deep water risers, Ocean Engineering, 213, 107669. doi: 10.1016/j.oceaneng.2020.107669

    16. [16]

      Liu, G.J., Li, H.Y., Qiu, Z.Z., Leng, D.X., Li, Z.X. and Li, W.H., 2020. A mini review of recent progress on vortex-induced vibrations of marine risers, Ocean Engineering, 195, 106704. doi: 10.1016/j.oceaneng.2019.106704

    17. [17]

      Liu, H., Han, X., Williams, J.J.R., Xie, R.Y. and Lin, P.Z., 2023. 3D numerical study of splitter Plate’s effect on a flexible cylinder VIV, Ocean Engineering, 269, 113397. doi: 10.1016/j.oceaneng.2022.113397

    18. [18]

      Martini, S., Morgut, M. and Pigazzini, R., 2021. Numerical VIV analysis of a single elastically-mounted cylinder: Comparison between 2D and 3D URANS simulations, Journal of Fluids and Structures, 104, 103303. doi: 10.1016/j.jfluidstructs.2021.103303

    19. [19]

      Nikoo, H.M., Bi, K.M. and Hao, H., 2018. Effectiveness of using pipe-in-pipe (PIP) concept to reduce vortex-induced vibrations (VIV): Three-dimensional two-way FSI analysis, Ocean Engineering, 148, 263–276. doi: 10.1016/j.oceaneng.2017.11.040

    20. [20]

      Rabiee, A.H., Barzan, M.R. and Mohammadebrahim, A., 2021. Flow-induced vibration suppression of elastic square cylinder using windward-suction-leeward-blowing approach, Applied Ocean Research, 109, 102552. doi: 10.1016/j.apor.2021.102552

    21. [21]

      Rashidi, S., Hayatdavoodi, M. and Esfahani, J.A., 2016. Vortex shedding suppression and wake control: A review, Ocean Engineering, 126, 57–80. doi: 10.1016/j.oceaneng.2016.08.031

    22. [22]

      Song, Z.H., Yang, X., Li, T., Shen, Y.J. and Duan, M.L., 2023. Numerical investigation on VIV of a circular cylinder with multiple small control rods, Applied Ocean Research, 139, 103690. doi: 10.1016/j.apor.2023.103690

    23. [23]

      Sourav, K. and Sen, S., 2019. Transition of VIV-only motion of a square cylinder to combined VIV and galloping at low Reynolds numbers, Ocean Engineering, 187, 106208. doi: 10.1016/j.oceaneng.2019.106208

    24. [24]

      Tang, T., Zhu, H.J., Song, J.Z., Ma, B.W. and Zhou, T.M., 2022. The state-of-the-art review on the wake alteration of a rotating cylinder and the associated interaction with flow-induced vibration, Ocean Engineering, 254, 111340. doi: 10.1016/j.oceaneng.2022.111340

    25. [25]

      Vicente-Ludlam, D., Barrero-Gil, A. and Velazquez, A., 2017. Flow-induced vibration of a rotating circular cylinder using position and velocity feedback, Journal of Fluids and Structures, 72, 127–151. doi: 10.1016/j.jfluidstructs.2017.05.001

    26. [26]

      Wan, H. and Patnaik, S.S., 2016. Suppression of vortex-induced vibration of a circular cylinder using thermal effects, Physics of Fluids, 28(12), 123603. doi: 10.1063/1.4972178

    27. [27]

      Wang, H.B., Ding, L., Zhang, L., Zou, Q.F. and Sharma, R.N., 2020. Control of two-degree-of-freedom vortex induced vibrations of a circular cylinder using synthetic Jets: Effect of synthetic jet orientation angle and phase difference, Ocean Engineering, 217, 107906. doi: 10.1016/j.oceaneng.2020.107906

    28. [28]

      Wang, W. and Duan, P.H., 2024. Vortex-induced vibration response of the cylinder inspired by Terebridae, Marine Structures, 94, 103575. doi: 10.1016/j.marstruc.2024.103575

    29. [29]

      Wang, W., Mao, Z.Y., Song, B.W. and Han, P., 2021a. Numerical investigation on vortex-induced vibration suppression of the cactus-inspired cylinder with some ribs, Physics of Fluids, 33(3), 037127. doi: 10.1063/5.0043185

    30. [30]

      Wang, W., Mao, Z.Y., Song, B.W. and Zhang, T.Y., 2021b. Vortex-induced vibration response of a cactus-inspired cylinder near a stationary wall, Physics of Fluids, 33(7), 077119. doi: 10.1063/5.0057107

    31. [31]

      Wang, W., Song, B.W., Mao, Z.Y., Tian, W.L. and Zhang, T.Y., 2020. Numerical investigation on VIV suppression of the cylinder with the bionic surface inspired by giant cactus, Ocean Engineering, 214, 107775. doi: 10.1016/j.oceaneng.2020.107775

    32. [32]

      Wang, W. and Zhao, F.W., 2023. Numerical investigation on flow-induced vibration response of the cylinder inspired by the honeycomb, Ocean Engineering, 268, 113461. doi: 10.1016/j.oceaneng.2022.113461

    33. [33]

      Wang, Z.C., Fan, D.X. and Triantafyllou, M.S., 2021. Illuminating the complex role of the added mass during vortex induced vibration, Physics of Fluids, 33(8), 085120. doi: 10.1063/5.0059013

    34. [34]

      Yuan, W.Y., Laima, S.J., Gao, D.L., Chen, W.L. and Li, H., 2021. Influence of porous media coatings on flow characteristics and vortex-induced vibration of circular cylinders, Journal of Fluids and Structures, 106, 103365. doi: 10.1016/j.jfluidstructs.2021.103365

    35. [35]

      Zhao, M., 2023. A review of recent studies on the control of vortex-induced vibration of circular cylinders, Ocean Engineering, 285, 115389. doi: 10.1016/j.oceaneng.2023.115389

    36. [36]

      Zheng, C.D., Ji, T.W., Xie, F.F., Zhang, X.S., Zheng, H.Y. and Zheng, Y., 2021. From active learning to deep reinforcement learning: Intelligent active flow control in suppressing vortex-induced vibration, Physics of Fluids, 33(6), 063607. doi: 10.1063/5.0052524

    37. [37]

      Zheng, H.X. and Wang, J.S., 2022. Flow-induced vibration of flexible cylinders covered by fixed fairings with different chord-thickness ratios, Marine Structures, 86, 103299. doi: 10.1016/j.marstruc.2022.103299

    38. [38]

      Zhu, H.J. and Gao, Y., 2017. Vortex-induced vibration suppression of a main circular cylinder with two rotating control rods in its near wake: Effect of the rotation direction, Journal of Fluids and Structures, 74, 469–491. doi: 10.1016/j.jfluidstructs.2017.07.004

  • 加载中
    1. [1]

      Peng LIZhen-xing JIANGYu LIUYu WANGHai-yan GUOFei WANGYong-bo ZHANG . Experimental Investigation of Disturbing the Flow Field on the Vortex-Induced Vibration of Deepwater Riser Fitted with Gas Jetting Active Vibration Suppression Device. China Ocean Engineering, 2020, 34(3): 341-351. doi: 10.1007/s13344-020-0031-7

    2. [2]

      Peng LIZheng-kai DONGYu LIUYu WANGAi-jun CONGHai-yan GUOQiang FU . Experimental Investigation on Vortex-Induced Vibration of Deep-Sea Risers of Different Excitation Water Depths. China Ocean Engineering, 2021, 35(2): 215-227. doi: 10.1007/s13344-021-0019-y

    3. [3]

      Zun-feng DUHai-ming ZHUJian-xing YU . Sparse Modal Decomposition Method Addressing Underdetermined Vortex-Induced Vibration Reconstruction Problem for Marine Risers. China Ocean Engineering, 2024, 38(2): 285-296. doi: 10.1007/s13344-024-0024-z

    4. [4]

      . Prediction Model for Vortex-Induced Vibration of Circular Cylinder with Data of Forced Vibration. China Ocean Engineering, 2007, (2): -.

    5. [5]

      Wan-hai XUYing-sen LUANLi-qin LIUYing-xiang WU . Influences of the Helical Strake Cross-Section Shape on Vortex-Induced Vibrations Suppression for A Long Flexible Cylinder. China Ocean Engineering, 2017, 31(4): 438-446. doi: 10.1007/s13344-017-0050-1

    6. [6]

      Hong-jie WENYu-meng ZHAOGan-cheng ZHULiang-sheng ZHUBing REN . SPH Modelling of the Vortex-Induced Vibration of A Near-Wall Cylinder. China Ocean Engineering, 2023, 37(3): 355-368. doi: 10.1007/s13344-023-0030-6

    7. [7]

      杨 兵马建林崔金声徐万海 . Behavior of Vortex-Induced Vibration of A Circular Cylinder Near A Deformable Wall with Two Degrees of Freedom in Steady Flow. China Ocean Engineering, 2011, (4): 549-564.

    8. [8]

      Wan-hai XUWen-qi QINMing HEXi-feng GAO . Passive VIV Reduction of An Inclined Flexible Cylinder by Means of Helical Strakes with Round-Section. China Ocean Engineering, 2018, 32(4): 413-421. doi: 10.1007/s13344-018-0043-8

    9. [9]

      Abu Bakar IZHARArshad Hussain QURESHIShahab KHUSHNOOD . Simulation of Vortex-Induced Vibrations of A Cylinder Using ANSYS CFX. China Ocean Engineering, 2014, (4): 541-556.

    10. [10]

      IZHAR AbubakarQURESHI Arshad HussainKHUSHNOOD Shahab . Simulation of Vortex-Induced Vibrations of A Cylinder Using ANSYS CFX Rigid Body Solver. China Ocean Engineering, 2017, (1): 79-90. doi: 10.1007/s13344-017-0010-9

    11. [11]

      Yun GAOBin YANGLi ZOUZhi ZONGZhuang-zhuang ZHANG . Vortex-Induced Vibrations of A Long Flexible Cylinder in Linear and Exponential Shear Flows. China Ocean Engineering, 2019, 33(1): 44-56. doi: 10.1007/s13344-019-0005-9

    12. [12]

      Hua-kun WANGYu-hao YANCan-ming CHENChun-ning JIQiu ZHAI . Numerical Investigation on Vortex-Induced Rotations of A Triangular Cylinder Using An Immersed Boundary Method. China Ocean Engineering, 2019, 33(6): 723-733. doi: 10.1007/s13344-019-0070-0

    13. [13]

      Xi-feng GAOWu-de XIEWan-hai XUYu-chuan BAIHai-tao ZHU . A Novel Wake Oscillator Model for Vortex-Induced Vibrations Prediction of A Cylinder Considering the Influence of Reynolds Number. China Ocean Engineering, 2018, 32(2): 132-143. doi: 10.1007/s13344-018-0015-z

    14. [14]

      LI Hua-junWANG ChaoLIU Fu-shunHU Sau-Lon James . Stress Wave Propagation Analysis on Vortex-Induced Vibration of Marine Risers. China Ocean Engineering, 2017, (1): 30-36. doi: 10.1007/s13344-017-0004-7

    15. [15]

      SONG Lei-jianFU Shi-xiaoLI ManGAO YunMA Lei-xin . Tension and Drag Forces of Flexible Risers Undergoing Vortex-Induced Vibration. China Ocean Engineering, 2017, (1): 1-10. doi: 10.1007/s13344-017-0001-x

    16. [16]

      范宇婷毛海英郭海燕刘庆海李效民 . Experimental Investigation on Vortex-Induced Vibration of Steel Catenary Riser. China Ocean Engineering, 2015, (5): 691-704.

    17. [17]

      . The Effect of Internal Fluid on the Response of Vortex-Induced Vibration of Marine Risers. China Ocean Engineering, 2004, (1): -.

    18. [18]

      Wan-hai XUShu-hai ZHANGLi-dan ZHOUXi-feng GAO . Use of Helical Strakes for FIV Suppression of Two Inclined Flexible Cylinders in A Side-by-Side Arrangement. China Ocean Engineering, 2018, 32(3): 331-340. doi: 10.1007/s13344-018-0034-9

    19. [19]

      . Suppression of Flow Separation Around A Circular Cylinder by Utilizing Lorentz Force. China Ocean Engineering, 2008, (1): -.

    20. [20]

      高 云付世晓曹 静陈一帆 . Experimental Study on Response Performance of VIV of A Flexible Riser with Helical Strakes. China Ocean Engineering, 2015, (5): 673-690.

Metrics
  • PDF Downloads(15)
  • Abstract views(3874)
  • HTML views(2774)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

水利部交通运输部国家能源局南京水利科学研究院 《中国海洋工程》编辑部 版权所有

Address: 34 Hujuguan, Nanjing 210024, China Pos: 210024 Tel: 025-85829388 E-mail: coe@nhri.cn

Support by Beijing Renhe Information Technology Co. Ltd E-mail: info@rhhz.net

苏ICP备05007122号-5

/

DownLoad:  Full-Size Img  PowerPoint
Return