ISSN  0890-5487 CN 32-1441/P

Citation: Chen HUANG, Ji-jun GU, Ji-chuan JIA, Lei-lei CHEN, Shu-jiang WANG and Lei GAO. Study on Free-Standing Riser Under Different Working Conditions Based on 3D Co-Rotational Beam Element[J]. China Ocean Engineering, 2024, 38(5): 725-738. doi: 10.1007/s13344-024-0057-3 shu

Study on Free-Standing Riser Under Different Working Conditions Based on 3D Co-Rotational Beam Element

  • Corresponding author: Ji-jun GU, gu@cup.edu.cn
  • Received Date: 2023-10-02
    Accepted Date: 2024-04-17
    Available Online: 2024-10-22

  • When the free standing riser (FSR) is in service in the ocean, its mechanical properties are affected by various factors, including complex ocean current forces, buoyancy of the buoyancy can, and torque caused by the deflection of the upper floating body. These loads have a great influence on the deformation and internal force of the FSR. The static performance of FSR is investigated in this research under various working conditions. The finite element model of FSR is established based on the co-rotational method. The arc length approach is used to solve the model. The load is exerted in increments. The current load on the riser changes with the configuration of the riser. The accuracy of the numerical method is verified by Abaqus software. The calculation time is also compared. Then, the effects of uniform current, actual current and floating body yaw motion on FSR are studied by parameter analysis. Additionally, the influence of the FSR on the ocean current after the failure of part of the buoyancy can chamber is analyzed. The results show that the numerical model based on the co-rotational method can effectively simulate the large rotation and torsion behavior of FSR. This method has high computational efficiency and precision, and this method can quickly improve the efficiency of numerical calculation of static analysis of deep-water riser. The proposed technology may serve as an alternative to the existing proprietary commercial software, which uses a complex graphical user interface.
  • 加载中
    1. [1]

      Adamiec–Wójcik, I., Brzozowska, L., Drąg, Ł. and Wojciech, S., 2023. Optimisation of riser reentry process and obstacle avoidance, Ocean Engineering, 268, 113561. doi: 10.1016/j.oceaneng.2022.113561

    2. [2]

      Albino, J.C.R., Almeida, C.A., Menezes, I.F.M. and Paulino, G.H., 2018. Co-rotational 3D beam element for nonlinear dynamic analysis of risers manufactured with functionally graded materials (FGMs), Engineering Structures, 173, 283–299. doi: 10.1016/j.engstruct.2018.05.092

    3. [3]

      Albino, J.C.R., Almeida, C.A., Menezes, I.F.M. and Paulino, G.H., 2021. Dynamic response of deep-water catenary risers made of functionally graded materials, Mechanics Research Communications, 111, 103660. doi: 10.1016/j.mechrescom.2021.103660

    4. [4]

      API, 2014. Specification for Unbonded Flexible Pipe, API SPEC 17J, American Petroleum Institute, Washington, DC.

    5. [5]

      Battini, J.M., 2002. Co-Rotational Beam Elements in Instability Problems. Ph.D. Thesis. Royal Institute of Technology, Stockholm, 196.

    6. [6]

      Battini, J.M. and Pacoste, C., 2002. Co-rotational beam elements with warping effects in instability problems, Computer Methods in Applied Mechanics and Engineering, 191(17-18), 1755–1789. doi: 10.1016/S0045-7825(01)00352-8

    7. [7]

      Bomfimsilva, C.T.P. and Netto, T.A., 2020. On the feasibility of a novel concept for a free standing riser, Ocean Engineering, 214, 107731. doi: 10.1016/j.oceaneng.2020.107731

    8. [8]

      Chai, Y.T., Varyani, K.S. and Barltrop, N.D.P., 2002. Three-dimensional Lump-Mass formulation of a catenary riser with bending, torsion and irregular seabed interaction effect, Ocean Engineering, 29(12), 1503–1525. doi: 10.1016/S0029-8018(01)00087-7

    9. [9]

      Chen, H.F., Xu, S.P. and Guo, H.Y., 2011. Parametric study of global response behavior of deepwater free standing hybrid risers, Journal of Ship Mechanics, 15(9), 996–1004.

    10. [10]

      Cho, H., Kim, H. and Shin, S., 2018. Geometrically nonlinear dynamic formulation for three-dimensional co-rotational solid elements, Computer Methods in Applied Mechanics and Engineering, 328, 301–320. doi: 10.1016/j.cma.2017.08.037

    11. [11]

      De Wilde, J., 2007. Model tests on the vortex induced motions of the air can of a free standing riser system in current, Proceedings of the Deep Offshore Technology Conference, Stavanger, Norway.

    12. [12]

      Felippa, C.A. and Haugen, B., 2005. A unified formulation of small-strain corotational finite elements: I. Theory, Computer Methods in Applied Mechanics and Engineering, 194(21-24), 2285–2335. doi: 10.1016/j.cma.2004.07.035

    13. [13]

      Fisher, E.A. and Hackett, H.P., 1988. World’s first rigid free-standing production riser, OCEANS '88. 'A Partnership of Marine Interests'. Proceedings, IEEE, Baltimore, MD, USA, pp. 607–611.

    14. [14]

      Guo, S.X., Li, Y.L., Li, M., Chen, W.M. and Kong, Y., 2018. Dynamic response analysis on flexible riser with different configurations in deep-water based on FEM simulation, Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering, ASME, Madrid, Spain.

    15. [15]

      Kadapa, C., 2021. A simple extrapolated predictor for overcoming the starting and tracking issues in the arc-length method for nonlinear structural mechanics, Engineering Structures, 234, 111755. doi: 10.1016/j.engstruct.2020.111755

    16. [16]

      Kamman, J.W. and Huston, R.L., 2001. Multibody dynamics modeling of variable length cable systems, Multibody System Dynamics, 5(3), 211–221. doi: 10.1023/A:1011489801339

    17. [17]

      Le, T.N., Battini, J.M. and Hjiaj, M., 2014. A consistent 3D corotational beam element for nonlinear dynamic analysis of flexible structures, Computer Methods in Applied Mechanics and Engineering, 269, 538–565. doi: 10.1016/j.cma.2013.11.007

    18. [18]

      Morison, J.R., Johnson, J.W. and Schaaf, S.A., 1950. The force exerted by surface waves on piles, Journal of Petroleum Technology, 2(5), 149–154. doi: 10.2118/950149-G

    19. [19]

      Morooka, C.K. and Shiguemoto, D.A., 2012. Dynamic behavior analysis of a deepwater self standing hybrid riser system, ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, ASME, Rio de Janeiro, Brazil.

    20. [20]

      Pereira, P.S.D., Maeda, K., Morooka, C.K., Tamura, K. and Itoh, K., 2005. Experimental study on a self standing hybrid riser system throughout tests on a deep-sea model basin, Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering, ASME, Halkidiki, Greece, pp. 1–7.

    21. [21]

      Riks, E., 1979. An incremental approach to the solution of snapping and buckling problems, International Journal of Solids and Structures, 15(7), 529–551. doi: 10.1016/0020-7683(79)90081-7

    22. [22]

      Ruffels, A.W. and Zingoni, A., 2016. On the accuracy of lumped mass models for free vibration of beams, in: Zingoni, A. (ed.), Insights and Innovations in Structural Engineering, Mechanics and Computation, CRC Press, Cape Town, pp. 127.

    23. [23]

      Sanchez-Mondragon, J., Vázquez-Hernández, A.O., Cho, S.K. and Sung, H.G., 2018. Yaw motion analysis of a FPSO turret mooring system under wave drift forces, Applied Ocean Research, 74, 170–187. doi: 10.1016/j.apor.2018.02.013

    24. [24]

      Shi, J.B., Liu, Z.Y. and Hong, J.Z., 2018a. A new rotation-free shell formulation using exact corotational frame for dynamic analysis and applications, Journal of Computational and Nonlinear Dynamics, 13(4), 041006. doi: 10.1115/1.4039129

    25. [25]

      Shi, J.B., Liu, Z.Y. and Hong, J.Z., 2018b. Multibody dynamic analysis using a rotation-free shell element with corotational frame, Acta Mechanica Sinica, 34(4), 769–780. doi: 10.1007/s10409-018-0763-2

    26. [26]

      Tan, R.L., Duan, M.L., Wang, Z.M., He, N., Zhou, X.K. and Yong, Q.W., 2018. Numerical calculation model investigation on response for connector assembly of a free-standing hybrid riser with experimental validation, Ocean Engineering, 155, 144–155. doi: 10.1016/j.oceaneng.2017.12.041

    27. [27]

      Tong, P., Pian, T.H.H. and Bucciarblli, L.L., 1971. Mode shapes and frequencies by finite element method using consistent and lumped masses, Computers & Structures, 1(4), 623–638.

    28. [28]

      Trapper, P.A., 2019. Feasible numerical method for analysis of offshore pipeline in installation, Applied Ocean Research, 88, 48–62. doi: 10.1016/j.apor.2019.04.018

    29. [29]

      Trapper, P.A., 2020a. Feasible numerical analysis of steel lazy-wave riser, Ocean Engineering, 195, 106643. doi: 10.1016/j.oceaneng.2019.106643

    30. [30]

      Trapper, P.A., 2020b. Static analysis of offshore pipe-lay on flat inelastic seabed, Ocean Engineering, 213, 107673. doi: 10.1016/j.oceaneng.2020.107673

    31. [31]

      Trapper, P.A., 2022a. A numerical model for geometrically nonlinear analysis of a pipe-lay on a rough seafloor, Ocean Engineering, 252, 111146. doi: 10.1016/j.oceaneng.2022.111146

    32. [32]

      Trapper, P.A., 2022b. A numerical model for geometrically nonlinear analysis of long free spanning offshore pipelines enhanced with buoyancy modules, Applied Ocean Research, 124, 103224. doi: 10.1016/j.apor.2022.103224

    33. [33]

      Trapper, P.A. and Mishal, I., 2020. Numerical analysis of offshore pipe-lay subjected to environment-induced non-uniformly distributed follower loads, Applied Ocean Research, 100, 102149. doi: 10.1016/j.apor.2020.102149

    34. [34]

      Wang, G., Qi, Z.H. and Xu, J.S., 2020. A high-precision co-rotational formulation of 3D beam elements for dynamic analysis of flexible multibody systems, Computer Methods in Applied Mechanics and Engineering, 360, 112701. doi: 10.1016/j.cma.2019.112701

    35. [35]

      Yamamoto, M., Masanobu, S., Takano, S., Kanada, S., Fujiwara, T. and Asanuma, T., 2013. A model experiment of a free standing riser in the deep-sea basin, Proceedings of the 32nd International Conference on Ocean, Offshore and Arctic Engineering, ASME, Nantes, France.

    36. [36]

      Yang, J., Li, L., Yang, Y.X. and Zhang, M.H., 2023. Research on stability of deepwater drilling riser system in freestanding mode, Ocean Engineering, 279, 114439. doi: 10.1016/j.oceaneng.2023.114439

    37. [37]

      Yazdchi, M., 2005. Buoyancy potential conserving technique for dynamic analysis of offshore pipes and risers, International Journal for Numerical Methods in Engineering, 63(14), 2040–2067. doi: 10.1002/nme.1355

    38. [38]

      Zhang, C., Lu, L., Cao, Q.Y., Cheng, L. and Tang, G.Q., 2022. Nonlinear motion regimes and phase dynamics of a free standing hybrid riser system subjected to ocean current and vessel motion, Ocean Engineering, 252, 111197. doi: 10.1016/j.oceaneng.2022.111197

  • 加载中
    1. [1]

      WU Wen-huaLV Bai-chengYUE Qian-jinZHANG Yan-taoLIN Yang . Research on Analytical Method of Fatigue Characteristics of Soft Yoke Mooring System Based on Full-Scale Measurement. China Ocean Engineering, 2017, (2): 230-237. doi: 10.1007/s13344-017-0027-0

    2. [2]

      Yan-wei LIXiu-quan LIUJin-long WANGGuo-ming CHENYuan-jiang CHANGLei-xiang SHENG . Dynamic Analysis of A Deepwater Drilling Riser with A New Hang-off System. China Ocean Engineering, 2024, 38(1): 29-41. doi: 10.1007/s13344-024-0003-4

    3. [3]

      杨敏冬滕 斌 . Static and Dynamic Analysis of Mooring Lines by Nonlinear Finite Element Method. China Ocean Engineering, 2010, (3): 417-430.

    4. [4]

      TONG Dong JinLOW Ying MinSHEEHAN John M. . Nonlinear Bend Stiffener Analysis Using A Simple Formulation and Finite Element Method. China Ocean Engineering, 2011, (4): 577-590.

    5. [5]

      . A Method for Analyzing System Reliability of Existing Jacket Platforms. China Ocean Engineering, 2008, (3): -.

    6. [6]

      . Nonlinear Finite Element Analysis of Ocean Cables. China Ocean Engineering, 2004, (4): -.

    7. [7]

      . A Finite Element Solution of Wave Forces on Submerged Horizontal Circular Cylinders. China Ocean Engineering, 2004, (3): -.

    8. [8]

      Qing-long LEIXiao-hua ZHU . Torsional Response Analysis of Flexible Pipe Based on Theory and Finite Element Method. China Ocean Engineering, 2023, 37(2): 190-203. doi: 10.1007/s13344-023-0017-3

    9. [9]

      Jun YANQi SUYu-feng BUQing-zhen LUZhi-xun YANG . Study on the Nonlinear Tension−Torsion Coupled Stiffness of the High-Current Composite Umbilical Considering the Thermal Effect. China Ocean Engineering, 2022, 36(4): 588-600. doi: 10.1007/s13344-022-0056-1

    10. [10]

      Sheng XIANGBin CHENGFeng-yu ZHANGMiao TANG . An Improved Time Domain Approach for Analysis of Floating Bridges Based on Dynamic Finite Element Method and State-Space Model. China Ocean Engineering, 2022, 36(5): 682-696. doi: 10.1007/s13344-022-0061-4

    11. [11]

      . Ship Hull Slamming Analysis with Nonlinear Boundary Element Method. China Ocean Engineering, 1997, (4): -.

    12. [12]

      . A Finite Element Method for Cracked Components of Structures. China Ocean Engineering, 2003, (2): -.

    13. [13]

      袁 梦范 菊缪国平朱仁传黄祥鹿 . Studies on Mooring Energy Based on Finite Element Method. China Ocean Engineering, 2010, (4): 709-724.

    14. [14]

      . Dynamic Analysis of Deep-Ocean Mining Pipe System by Discrete Element Method. China Ocean Engineering, 2007, (1): -.

    15. [15]

      . Nonlinear Static Finite Element Stress Analysis of Pipe-in-Pipe Risers. China Ocean Engineering, 2005, (1): -.

    16. [16]

      . Finite Element Analysis to Two-Dimensional Nonlinear Sloshing Problems. China Ocean Engineering, 2001, (2): -.

    17. [17]

      . A Finite Volume Method with Unstructured Triangular Grids for Numerical Modeling of Tidal Current. China Ocean Engineering, 2005, (4): -.

    18. [18]

      . Three-Dimensional Boundary Element Method Applied to Nonlinear Wave Transformation. China Ocean Engineering, 1999, (2): -.

    19. [19]

      Dong-sheng QIAOBo GUANHai-zhi LIANGDe-zhi NINGBin-bin LIJin-ping OU . An Improved Method of Predicting Drag Anchor Trajectory Based on the Finite Element Analyses of Holding Capacity. China Ocean Engineering, 2020, 34(1): 1-9. doi: 10.1007/s13344-020-0001-0

    20. [20]

      Yu-hang TANGZhe ZHAOHai-chao LIFu-zhen PANGYang TANGYuan DU . A Wave Superposition–Finite Element Method for Calculating the Radiated Noise Generated by Volumetric Targets in Shallow Water. China Ocean Engineering, 2024, 38(5): 845-854. doi: 10.1007/s13344-024-0066-2

Metrics
  • PDF Downloads(10)
  • Abstract views(2883)
  • HTML views(2474)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

水利部交通运输部国家能源局南京水利科学研究院 《中国海洋工程》编辑部 版权所有

Address: 34 Hujuguan, Nanjing 210024, China Pos: 210024 Tel: 025-85829388 E-mail: coe@nhri.cn

Support by Beijing Renhe Information Technology Co. Ltd E-mail: info@rhhz.net

苏ICP备05007122号-5

/

DownLoad:  Full-Size Img  PowerPoint
Return