Study on Free-Standing Riser Under Different Working Conditions Based on 3D Co-Rotational Beam Element
- Corresponding author: Ji-jun GU, gu@cup.edu.cn
Citation:
Chen HUANG, Ji-jun GU, Ji-chuan JIA, Lei-lei CHEN, Shu-jiang WANG and Lei GAO. Study on Free-Standing Riser Under Different Working Conditions Based on 3D Co-Rotational Beam Element[J]. China Ocean Engineering, 2024, 38(5): 725-738.
doi:
10.1007/s13344-024-0057-3
Adamiec–Wójcik, I., Brzozowska, L., Drąg, Ł. and Wojciech, S., 2023. Optimisation of riser reentry process and obstacle avoidance, Ocean Engineering, 268, 113561. doi: 10.1016/j.oceaneng.2022.113561
Albino, J.C.R., Almeida, C.A., Menezes, I.F.M. and Paulino, G.H., 2018. Co-rotational 3D beam element for nonlinear dynamic analysis of risers manufactured with functionally graded materials (FGMs), Engineering Structures, 173, 283–299. doi: 10.1016/j.engstruct.2018.05.092
Albino, J.C.R., Almeida, C.A., Menezes, I.F.M. and Paulino, G.H., 2021. Dynamic response of deep-water catenary risers made of functionally graded materials, Mechanics Research Communications, 111, 103660. doi: 10.1016/j.mechrescom.2021.103660
API, 2014. Specification for Unbonded Flexible Pipe, API SPEC 17J, American Petroleum Institute, Washington, DC.
Battini, J.M., 2002. Co-Rotational Beam Elements in Instability Problems. Ph.D. Thesis. Royal Institute of Technology, Stockholm, 196.
Battini, J.M. and Pacoste, C., 2002. Co-rotational beam elements with warping effects in instability problems, Computer Methods in Applied Mechanics and Engineering, 191(17-18), 1755–1789. doi: 10.1016/S0045-7825(01)00352-8
Bomfimsilva, C.T.P. and Netto, T.A., 2020. On the feasibility of a novel concept for a free standing riser, Ocean Engineering, 214, 107731. doi: 10.1016/j.oceaneng.2020.107731
Chai, Y.T., Varyani, K.S. and Barltrop, N.D.P., 2002. Three-dimensional Lump-Mass formulation of a catenary riser with bending, torsion and irregular seabed interaction effect, Ocean Engineering, 29(12), 1503–1525. doi: 10.1016/S0029-8018(01)00087-7
Chen, H.F., Xu, S.P. and Guo, H.Y., 2011. Parametric study of global response behavior of deepwater free standing hybrid risers, Journal of Ship Mechanics, 15(9), 996–1004.
Cho, H., Kim, H. and Shin, S., 2018. Geometrically nonlinear dynamic formulation for three-dimensional co-rotational solid elements, Computer Methods in Applied Mechanics and Engineering, 328, 301–320. doi: 10.1016/j.cma.2017.08.037
De Wilde, J., 2007. Model tests on the vortex induced motions of the air can of a free standing riser system in current, Proceedings of the Deep Offshore Technology Conference, Stavanger, Norway.
Felippa, C.A. and Haugen, B., 2005. A unified formulation of small-strain corotational finite elements: I. Theory, Computer Methods in Applied Mechanics and Engineering, 194(21-24), 2285–2335. doi: 10.1016/j.cma.2004.07.035
Fisher, E.A. and Hackett, H.P., 1988. World’s first rigid free-standing production riser, OCEANS '88. 'A Partnership of Marine Interests'. Proceedings, IEEE, Baltimore, MD, USA, pp. 607–611.
Guo, S.X., Li, Y.L., Li, M., Chen, W.M. and Kong, Y., 2018. Dynamic response analysis on flexible riser with different configurations in deep-water based on FEM simulation, Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering, ASME, Madrid, Spain.
Kadapa, C., 2021. A simple extrapolated predictor for overcoming the starting and tracking issues in the arc-length method for nonlinear structural mechanics, Engineering Structures, 234, 111755. doi: 10.1016/j.engstruct.2020.111755
Kamman, J.W. and Huston, R.L., 2001. Multibody dynamics modeling of variable length cable systems, Multibody System Dynamics, 5(3), 211–221. doi: 10.1023/A:1011489801339
Le, T.N., Battini, J.M. and Hjiaj, M., 2014. A consistent 3D corotational beam element for nonlinear dynamic analysis of flexible structures, Computer Methods in Applied Mechanics and Engineering, 269, 538–565. doi: 10.1016/j.cma.2013.11.007
Morison, J.R., Johnson, J.W. and Schaaf, S.A., 1950. The force exerted by surface waves on piles, Journal of Petroleum Technology, 2(5), 149–154. doi: 10.2118/950149-G
Morooka, C.K. and Shiguemoto, D.A., 2012. Dynamic behavior analysis of a deepwater self standing hybrid riser system, ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, ASME, Rio de Janeiro, Brazil.
Pereira, P.S.D., Maeda, K., Morooka, C.K., Tamura, K. and Itoh, K., 2005. Experimental study on a self standing hybrid riser system throughout tests on a deep-sea model basin, Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering, ASME, Halkidiki, Greece, pp. 1–7.
Riks, E., 1979. An incremental approach to the solution of snapping and buckling problems, International Journal of Solids and Structures, 15(7), 529–551. doi: 10.1016/0020-7683(79)90081-7
Ruffels, A.W. and Zingoni, A., 2016. On the accuracy of lumped mass models for free vibration of beams, in: Zingoni, A. (ed.), Insights and Innovations in Structural Engineering, Mechanics and Computation, CRC Press, Cape Town, pp. 127.
Sanchez-Mondragon, J., Vázquez-Hernández, A.O., Cho, S.K. and Sung, H.G., 2018. Yaw motion analysis of a FPSO turret mooring system under wave drift forces, Applied Ocean Research, 74, 170–187. doi: 10.1016/j.apor.2018.02.013
Shi, J.B., Liu, Z.Y. and Hong, J.Z., 2018a. A new rotation-free shell formulation using exact corotational frame for dynamic analysis and applications, Journal of Computational and Nonlinear Dynamics, 13(4), 041006. doi: 10.1115/1.4039129
Shi, J.B., Liu, Z.Y. and Hong, J.Z., 2018b. Multibody dynamic analysis using a rotation-free shell element with corotational frame, Acta Mechanica Sinica, 34(4), 769–780. doi: 10.1007/s10409-018-0763-2
Tan, R.L., Duan, M.L., Wang, Z.M., He, N., Zhou, X.K. and Yong, Q.W., 2018. Numerical calculation model investigation on response for connector assembly of a free-standing hybrid riser with experimental validation, Ocean Engineering, 155, 144–155. doi: 10.1016/j.oceaneng.2017.12.041
Tong, P., Pian, T.H.H. and Bucciarblli, L.L., 1971. Mode shapes and frequencies by finite element method using consistent and lumped masses, Computers & Structures, 1(4), 623–638.
Trapper, P.A., 2019. Feasible numerical method for analysis of offshore pipeline in installation, Applied Ocean Research, 88, 48–62. doi: 10.1016/j.apor.2019.04.018
Trapper, P.A., 2020a. Feasible numerical analysis of steel lazy-wave riser, Ocean Engineering, 195, 106643. doi: 10.1016/j.oceaneng.2019.106643
Trapper, P.A., 2020b. Static analysis of offshore pipe-lay on flat inelastic seabed, Ocean Engineering, 213, 107673. doi: 10.1016/j.oceaneng.2020.107673
Trapper, P.A., 2022a. A numerical model for geometrically nonlinear analysis of a pipe-lay on a rough seafloor, Ocean Engineering, 252, 111146. doi: 10.1016/j.oceaneng.2022.111146
Trapper, P.A., 2022b. A numerical model for geometrically nonlinear analysis of long free spanning offshore pipelines enhanced with buoyancy modules, Applied Ocean Research, 124, 103224. doi: 10.1016/j.apor.2022.103224
Trapper, P.A. and Mishal, I., 2020. Numerical analysis of offshore pipe-lay subjected to environment-induced non-uniformly distributed follower loads, Applied Ocean Research, 100, 102149. doi: 10.1016/j.apor.2020.102149
Wang, G., Qi, Z.H. and Xu, J.S., 2020. A high-precision co-rotational formulation of 3D beam elements for dynamic analysis of flexible multibody systems, Computer Methods in Applied Mechanics and Engineering, 360, 112701. doi: 10.1016/j.cma.2019.112701
Yamamoto, M., Masanobu, S., Takano, S., Kanada, S., Fujiwara, T. and Asanuma, T., 2013. A model experiment of a free standing riser in the deep-sea basin, Proceedings of the 32nd International Conference on Ocean, Offshore and Arctic Engineering, ASME, Nantes, France.
Yang, J., Li, L., Yang, Y.X. and Zhang, M.H., 2023. Research on stability of deepwater drilling riser system in freestanding mode, Ocean Engineering, 279, 114439. doi: 10.1016/j.oceaneng.2023.114439
Yazdchi, M., 2005. Buoyancy potential conserving technique for dynamic analysis of offshore pipes and risers, International Journal for Numerical Methods in Engineering, 63(14), 2040–2067. doi: 10.1002/nme.1355
Zhang, C., Lu, L., Cao, Q.Y., Cheng, L. and Tang, G.Q., 2022. Nonlinear motion regimes and phase dynamics of a free standing hybrid riser system subjected to ocean current and vessel motion, Ocean Engineering, 252, 111197. doi: 10.1016/j.oceaneng.2022.111197
WU Wen-hua , LV Bai-cheng , YUE Qian-jin , ZHANG Yan-tao , LIN Yang . Research on Analytical Method of Fatigue Characteristics of Soft Yoke Mooring System Based on Full-Scale Measurement. China Ocean Engineering, 2017, (2): 230-237. doi: 10.1007/s13344-017-0027-0
Yan-wei LI , Xiu-quan LIU , Jin-long WANG , Guo-ming CHEN , Yuan-jiang CHANG , Lei-xiang SHENG . Dynamic Analysis of A Deepwater Drilling Riser with A New Hang-off System. China Ocean Engineering, 2024, 38(1): 29-41. doi: 10.1007/s13344-024-0003-4
杨敏冬 , 滕 斌 . Static and Dynamic Analysis of Mooring Lines by Nonlinear Finite Element Method. China Ocean Engineering, 2010, (3): 417-430.
TONG Dong Jin , LOW Ying Min , SHEEHAN John M. . Nonlinear Bend Stiffener Analysis Using A Simple Formulation and Finite Element Method. China Ocean Engineering, 2011, (4): 577-590.
. A Method for Analyzing System Reliability of Existing Jacket Platforms. China Ocean Engineering, 2008, (3): -.
. Nonlinear Finite Element Analysis of Ocean Cables. China Ocean Engineering, 2004, (4): -.
. A Finite Element Solution of Wave Forces on Submerged Horizontal Circular Cylinders. China Ocean Engineering, 2004, (3): -.
Qing-long LEI , Xiao-hua ZHU . Torsional Response Analysis of Flexible Pipe Based on Theory and Finite Element Method. China Ocean Engineering, 2023, 37(2): 190-203. doi: 10.1007/s13344-023-0017-3
Jun YAN , Qi SU , Yu-feng BU , Qing-zhen LU , Zhi-xun YANG . Study on the Nonlinear Tension−Torsion Coupled Stiffness of the High-Current Composite Umbilical Considering the Thermal Effect. China Ocean Engineering, 2022, 36(4): 588-600. doi: 10.1007/s13344-022-0056-1
Sheng XIANG , Bin CHENG , Feng-yu ZHANG , Miao TANG . An Improved Time Domain Approach for Analysis of Floating Bridges Based on Dynamic Finite Element Method and State-Space Model. China Ocean Engineering, 2022, 36(5): 682-696. doi: 10.1007/s13344-022-0061-4
. Ship Hull Slamming Analysis with Nonlinear Boundary Element Method. China Ocean Engineering, 1997, (4): -.
. A Finite Element Method for Cracked Components of Structures. China Ocean Engineering, 2003, (2): -.
袁 梦 , 范 菊 , 缪国平 , 朱仁传 , 黄祥鹿 . Studies on Mooring Energy Based on Finite Element Method. China Ocean Engineering, 2010, (4): 709-724.
. Dynamic Analysis of Deep-Ocean Mining Pipe System by Discrete Element Method. China Ocean Engineering, 2007, (1): -.
. Nonlinear Static Finite Element Stress Analysis of Pipe-in-Pipe Risers. China Ocean Engineering, 2005, (1): -.
. Finite Element Analysis to Two-Dimensional Nonlinear Sloshing Problems. China Ocean Engineering, 2001, (2): -.
. A Finite Volume Method with Unstructured Triangular Grids for Numerical Modeling of Tidal Current. China Ocean Engineering, 2005, (4): -.
. Three-Dimensional Boundary Element Method Applied to Nonlinear Wave Transformation. China Ocean Engineering, 1999, (2): -.
Dong-sheng QIAO , Bo GUAN , Hai-zhi LIANG , De-zhi NING , Bin-bin LI , Jin-ping OU . An Improved Method of Predicting Drag Anchor Trajectory Based on the Finite Element Analyses of Holding Capacity. China Ocean Engineering, 2020, 34(1): 1-9. doi: 10.1007/s13344-020-0001-0
Yu-hang TANG , Zhe ZHAO , Hai-chao LI , Fu-zhen PANG , Yang TANG , Yuan DU . A Wave Superposition–Finite Element Method for Calculating the Radiated Noise Generated by Volumetric Targets in Shallow Water. China Ocean Engineering, 2024, 38(5): 845-854. doi: 10.1007/s13344-024-0066-2
水利部交通运输部国家能源局南京水利科学研究院 《中国海洋工程》编辑部 版权所有
Address: 34 Hujuguan, Nanjing 210024, China Pos: 210024 Tel: 025-85829388 E-mail: coe@nhri.cn
Support by Beijing Renhe Information Technology Co. Ltd E-mail: info@rhhz.net