ISSN  0890-5487 CN 32-1441/P

Citation: Yong-sheng ZHAO, Xiao-he SHE, Yan-ping HE, Jian-min YANG, Tao PENG and Yu-feng KOU. Experimental Study on New Multi-Column Tension-Leg-Type Floating Wind Turbine[J]. China Ocean Engineering, 2018, 32(2): 123-131. doi: 10.1007/s13344-018-0014-0 shu

Experimental Study on New Multi-Column Tension-Leg-Type Floating Wind Turbine

  • Corresponding author: Yan-ping HE, hyp110@sjtu.edu.cn
  • Received Date: 2017-07-11
    Accepted Date: 2018-01-07

    Fund Project: This work was financially supported by the National Basic Research Program of China (973 Program, Grant No. 2014CB046205).

Figures(21) / Tables(7)

  • Deep-water regions often have winds favorable for offshore wind turbines, and floating turbines currently show the greatest potential to exploit such winds. This work established proper scaling laws for model tests, which were then implemented in the construction of a model wind turbine with optimally designed blades. The aerodynamic, hydrodynamic, and elastic characteristics of the proposed new multi-column tension-leg-type floating wind turbine (WindStar TLP system) were explored in the wave tank testing of a 1:50 scale model at the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University. Tests were conducted under conditions of still water, white noise waves, irregular waves, and combined wind, wave, and current loads. The results established the natural periods of the motion, damping, motion response amplitude operators, and tendon tensions of the WindStar TLP system under different environmental conditions, and thus could serve as a reference for further research.
  • 加载中
    1. [1]

      Chakrabarti, S., 2005. Handbook of Offshore Engineering (2-Volume Set), Elsevier, Amsterdam.

    2. [2]

      Du, W.K., Zhao, Y.S., He, Y.P. and Liu, Y.D., 2016. Design, analysis and test of a model turbine blade for a wave basin test of floating wind turbines, Renewable Energy, 97, 414–421.

    3. [3]

      Du, W.K., Zhao, Y.S., Wang, M.C., He, Y.P. and Jiang, R.H., 2013. Design and analysis of a model wind turbine blade for wave basin test of floating wind turbines, Proceedings of the 23rd International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers, Anchorage, Alaska.

    4. [4]

      Duan, F., Hu, Z.Q. and Niedzwecki, J.M., 2016. Model test investigation of a spar floating wind turbine, Marine Structures, 49, 76–96.

    5. [5]

      International Electrotechnical Commission, 2009. Wind TurbinesPart 3: Design Requirements for Offshore Wind Turbines, IEC 61400–3:2009, IEC.

    6. [6]

      Jonkman, J., Butterfield, S., Musial, W. and Scott, G., 2009. Definition of a 5-MW Reference Wind Turbine for Offshore System Development, NREL/TP-500-38060, NREL, Golden, CO, USA.

    7. [7]

      Jonkman, J.M., 2007. Dynamics Modeling and Loads Analysis of An Offshore Floating Wind Turbine, NREL/TP-500-41958, NREL, Golden, CO, USA.

    8. [8]

      Kimball, R., Goupee, A.J., Fowler, M.J., de Ridder, E.J. and Helder, J., 2014. Wind/wave basin verification of a performance-matched scale-model wind turbine on a floating offshore wind turbine platform, Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, San Francisco, CA, Paper No. OMAE2014-24166, pp. V09BT09A025.

    9. [9]

      Martin, H.R., 2011. Development of A Scale Model Wind Turbine for Testing of Offshore Floating Wind Turbine Systems, The Graduate School, The University of Maine, Maine.

    10. [10]

      Martin, H.R., Kimball, R.W., Viselli, A.M. and Goupee, A.J., 2014. Methodology for wind/wave basin testing of floating offshore wind turbines, Journal of Offshore Mechanics and Arctic Engineering, 136(2), 020905.

    11. [11]

      Robertson, A.N., Jonkman, J.M., Goupee, A.J., Coulling, A.J., Prowell, I., Browning, J., Masciola, M.D. and Molta, P., 2013. Summary of conclusions and recommendations drawn from the DeepCwind scaled floating offshore wind system test campaign, Proceedings of the 32nd International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, Nantes, France, Paper No. Paper No. OMAE2013-10817, pp. V008T09A053.

    12. [12]

      Zhao, Y.S., Yang, J.M. and He, Y.P., 2012a. Preliminary design of a multi-column TLP foundation for a 5-MW offshore wind turbine, Energies, 5(10), 3874–3891.

    13. [13]

      Zhao, Y.S., Yang, J.M. and He, Y.P., 2012b. Concept design of a multi-column TLP for a 5MW offshore wind turbine, Proceedings of the 31st International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, Rio de Janeiro, Brazil, Paper No. OMAE2012-83245, pp. 225–232.

    14. [14]

      Zhao, Y.S., Yang, J.M., He, Y.P. and Gu, M.T., 2014. Time domain response analysis of a multi-column tension-leg-type floating wind turbine, The 11th ISOPE Pacific-Asia Offshore Mechanics Symposium, International Society of Offshore and Polar Engineers, Shanghai, China.

    15. [15]

      Zhao, Y.S., Yang, J.M., He, Y.P. and Gu, M.T., 2016a. Dynamic response analysis of a multi-column tension-leg-type floating wind turbine under combined wind and wave loading, Journal of Shanghai Jiaotong University (Science), 21(1), 103–111.

    16. [16]

      Zhao, Y.S., Yang, J.M., He, Y.P. and Gu, M.T., 2016b. Coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine, China Ocean Engineering, 30(4), 505–520.

  • 加载中
    1. [1]

      DING Qin-weiLI Chun . Research on the Influence of Helical Strakes on Dynamic Response of Floating Wind Turbine Platform. China Ocean Engineering, 2017, (2): 131-140. doi: 10.1007/s13344-017-0016-3

    2. [2]

      Han WANGZhi-qiang HUXiang-yin MENG . Dynamic Performance Investigation of A Spar-Type Floating Wind Turbine Under Different Sea Conditions. China Ocean Engineering, 2018, 32(3): 256-265. doi: 10.1007/s13344-018-0027-8

    3. [3]

      ZHANG Huo-mingKONG Ling-binGUAN Wei-bingHUANG Sai-huaFANG Gui-sheng . Dynamic Response Analysis of the Equivalent Water Depth Truncated Point of the Catenary Mooring Line. China Ocean Engineering, 2017, (1): 37-47. doi: 10.1007/s13344-017-0005-6

    4. [4]

      Qing-song LIUWei-pao MIAOMin-nan YUEChun LIBo WANGQing-wei DING . Dynamic Response of Offshore Wind Turbine on 3×3 Barge Array Floating Platform under Extreme Sea Conditions. China Ocean Engineering, 2021, 35(2): 186-200. doi: 10.1007/s13344-021-0017-0

    5. [5]

      Long MENGYan-ping HEYong-sheng ZHAOJie YANGHe YANGZhao-long HANLong YUWen-gang MAOWei-kang DU . Dynamic Response of 6MW Spar Type Floating Offshore Wind Turbine by Experiment and Numerical Analyses. China Ocean Engineering, 2020, 34(5): 608-620. doi: 10.1007/s13344-020-0055-z

    6. [6]

      Zhen LIUHai-yan GUO . Dynamic Response Study of Steel Catenary Riser Based on Slender Rod Model. China Ocean Engineering, 2019, 33(1): 57-64. doi: 10.1007/s13344-019-0006-8

    7. [7]

      Shuang-yi XIEJian GAOYong-ran LIShu-xin JIANGCheng-lin ZHANGJiao HE . Aero-Hydro-Elastic-Servo Modeling and Dynamic Response Analysis of A Monopile Offshore Wind Turbine Under Different Operating Scenarios. China Ocean Engineering, 2024, 38(3): 379-393. doi: 10.1007/s13344-024-0031-0

    8. [8]

      HU Zhi-qiangZHANG Dong-weiZHAO Dong-yaCHEN Gang . Structural Safety Assessment for FLNG-LNGC System During Offloading Operation Scenario. China Ocean Engineering, 2017, (2): 192-201. doi: 10.1007/s13344-017-0023-4

    9. [9]

      Chen-jie BIANLi-ming DUGa-ping WANGXin LIWei-ran LI . Dynamic Response of Sea-Crossing Rail-cum-Road Cable-Stayed Bridge Influenced by Random Wind–Wave–Undercurrent Coupling. China Ocean Engineering, 2023, 37(1): 85-100. doi: 10.1007/s13344-023-0008-4

    10. [10]

      Xiao-sen XUJia-yang GUHong-jie LINGPu-yi YANGShuai-shuai WANGYi-han XINGGAIDAI OlegZhong-yu ZHANG . Wake Effects on A Hybrid Semi-Submersible Floating Wind Farm with Multiple Hub Heights. China Ocean Engineering, 2023, 37(1): 101-114. doi: 10.1007/s13344-023-0009-3

    11. [11]

      Xiao-dong BAIHan-bing LUOPeng XIE . Effect of Wave Headings on the Dynamic Response of the Continuous Mating Operation of Floatover Installation. China Ocean Engineering, 2021, 35(1): 72-83. doi: 10.1007/s13344-021-0007-2

    12. [12]

      Rui-rui ZHANGCui LIChun-rong PUQian LIUYun-xiang YOU . Loads and Dynamic Response Characteristic on FPSO Under Internal Solitary Waves. China Ocean Engineering, 2024, 38(5): 785-796. doi: 10.1007/s13344-024-0061-7

    13. [13]

      . Model Test Study of Dynamic Ice Force on Compliant Conical Structures. China Ocean Engineering, 2007, (1): -.

    14. [14]

      Teng WANGjun-jie HAOXiao-ni WUYe LIXiao-tong WANG . Effect of Failure Mode of Taut Mooring System on the Dynamic Response of A Semi-Submersible Platform. China Ocean Engineering, 2021, 35(6): 841-851. doi: 10.1007/s13344-021-0074-4

    15. [15]

      Ying SUNJia-dong WANGRui-li HUODing ZHOUZhen-yuan GUWang-ping QIAN . Dynamic Response of A Group of Cylindrical Storage Tanks with Baffles Considering the Effect of Soil Foundation. China Ocean Engineering, 2024, 38(1): 129-143. doi: 10.1007/s13344-024-0011-4

    16. [16]

      Kun LIUYu GAOChen-shui ZHAOZe-ping WANG . Dynamic Response of the U-Typed Sandwich Panel Under Explosion Load Based on the SDOF Method. China Ocean Engineering, 2022, 36(5): 814-826. doi: 10.1007/s13344-022-0073-0

    17. [17]

      CIHAN Hulya KarakusCIHAN Kubilay . Dynamic Responses of Block Type Quay Walls Under Cyclic Loading. China Ocean Engineering, 2021, 35(2): 281-290. doi: 10.1007/s13344-021-0025-0

    18. [18]

      Hao WUYong-peng OU . Experimental Study of Air Layer Drag Reduction with Bottom Cavity for A Bulk Carrier Ship Model. China Ocean Engineering, 2019, 33(5): 554-562. doi: 10.1007/s13344-019-0053-1

    19. [19]

      Li-cheng QINHong-yan DINGPu-yang ZHANGHuai-liang LIWen-tai YU . Model Tests Research on A Float-Over Barge in Shallow Water Under the Undocking Conditions. China Ocean Engineering, 2021, 35(6): 933-942. doi: 10.1007/s13344-021-0082-4

    20. [20]

      Ying-ying WANGChao YANGZhong-shan YANGXiao-yu ZHAOJian-xi YINYang-dong HU . Dynamic Analysis of A Subsea Suspended Manifold Going Through Splash Zone During Installation. China Ocean Engineering, 2022, 36(4): 553-564. doi: 10.1007/s13344-022-0047-2

Metrics
  • PDF Downloads(100)
  • Abstract views(15650)
  • HTML views(551)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

水利部交通运输部国家能源局南京水利科学研究院 《中国海洋工程》编辑部 版权所有

Address: 34 Hujuguan, Nanjing 210024, China Pos: 210024 Tel: 025-85829388 E-mail: coe@nhri.cn

Support by Beijing Renhe Information Technology Co. Ltd E-mail: info@rhhz.net

苏ICP备05007122号-5

/

DownLoad:  Full-Size Img  PowerPoint
Return